Задачи по математике 5 класс на движение с ответами и решением
Тысячи заданий с решениями для подготовки к ЕГЭ—2018 по всем предметам. Система тестов для подготовки и самоподготовки к ЕГЭ.
Задачи на движение
Продолжаем изучать элементарные задачи по математике. Данный урок посвящен задачам на движение.
Задача на нахождение расстояния/скорости/времени
Задача 1. Автомобиль двигается со скоростью 80 км/ч. Сколько километров он проедет за 3 часа?
Если за один час автомобиль проезжает 80 километров, то за 3 часа он проедет в три раза больше. Чтобы найти расстояние, нужно скорость автомобиля (80км/ч) умножить на время движения (3ч)
Ответ: за 3 часа автомобиль проедет 240 километров.
Задача 2. На автомобиле за 3 часа проехали 180 км с одной и той же скоростью. Чему равна скорость автомобиля?
Скорость — это расстояние, пройденное телом за единицу времени. Под единицей подразумевается 1 час, 1 минута или 1 секунда.
Если за 3 часа автомобиль проехал 180 километров с одной и той же скоростью, то разделив 180 км на 3 часа мы определим расстояние, которое проезжал автомобиль за один час. А это есть скорость движения. Чтобы определить скорость, нужно пройденное расстояние разделить на время движения:
Ответ: скорость автомобиля составляет 60 км/ч
Задача 3. За 2 часа автомобиль проехал 96 км, а велосипедист за 6 часов проехал 72 км. Во сколько раз автомобиль двигался быстрее велосипедиста?
Определим скорость движения автомобиля. Для этого разделим пройденное им расстояние (96км) на время его движения (2ч)
Определим скорость движения велосипедиста. Для этого разделим пройденное им расстояние (72км) на время его движения (6ч)
Узнаем во сколько раз автомобиль двигался быстрее велосипедиста. Для этого найдем отношение 48 к 12
Ответ: автомобиль двигался быстрее велосипедиста в 4 раза.
Задача 4. Вертолет преодолел расстояние в 600 км со скоростью 120 км/ч. Сколько времени он был в полете?
Если за 1 час вертолет преодолевал 120 километров, то узнав сколько таких 120 километров в 600 километрах, мы определим сколько времени он был в полете. Чтобы найти время, нужно пройденное расстояние разделить на скорость движения
600 : 120 = 5 часов
Ответ: вертолет был в пути 5 часов.
Задача 5. Вертолет летел 6 часов со скоростью 160 км/ч. Какое расстояние он преодолел за это время?
Если за 1 час вертолет преодолевал 160 км, то за 6 часов, он преодолел в шесть раз больше. Чтобы определить расстояние, нужно скорость движения умножить на время
Ответ: за 6 часов вертолет преодолел 960 км.
Задача 6. Расстояние от Перми до Казани, равное 723 км, автомобиль проехал за 13 часов. Первые 9 часов он ехал со скоростью 55 км/ч. Определить скорость автомобиля в оставшееся время.
Определим сколько километров автомобиль проехал за первые 9 часов. Для этого умножим скорость с которой он ехал первые девять часов (55км/ч) на 9
Определим сколько осталось проехать. Для этого вычтем из общего рас
poiskvstavropole.ru
|
|
nsportal.ru
Решение задач на движение. 5-й класс
Важная задача цивилизации – научить человека мыслить
Т. Эдисон
Цели урока:
- Обучающая – продолжить работу по формированию у учащихся умений решать задачи на движение.
- Воспитательная – воспитывать волю и настойчивость для достижения поставленной цели.
- Развивающая – развивать навыки самоконтроля.
Тип урока: урок применения знаний и умений.
Оборудование: рисунки к задачам, карточки с формулами.
Структура урока:
- Сообщение темы и целей урока (1 мин.)
- Проверка домашнего задания (3 мин.)
- Устные упражнения (8 мин.)
- Отработка умений решать задачи на движение (18 мин.)
- Самостоятельная работа (с проверкой) (7 мин.)
- Постановка домашнего задания (1 мин.)
- Подведение итогов урока (2 мин.)
ХОД УРОКА
1. Сообщение темы и цели урока
2. Проверка домашнего задания
3. Устные упражнения
А) Заполнить таблицу
S | V | t | |
1 | 135 км | 9 км/ч | |
2 |
12 м/с | 4 с | |
3 | 132 м | 11 мин | |
4 | а км/ч | b ч |
Раскрывается одно из «крыльев» доски с
таблицей
Учащиеся комментируют формулы которыми
пользуются
На доске появляются карточки:
S = V * t V = S/t t = S/V
Б) По рисунку найти скорость
Ответ: скорость сближения V1 + V2
Ответ: скорость удаления V1 + V2
I) V1 > V2
Ответ: скорость сближения V1 – V2
II) V1 < V2
Ответ: скорость удаления V2 – V1
В) Могут ли три человека имея двухместный мотоцикл преодолеть расстояние в 60 километров за 3 часа, если скорость мотоцикла 50 км/ч а пешехода 5 км/ч.
Ответ: Да. Первый человек идет 2 часа со
скоростью 5 км/ч, он пройдет 10 км, ему останется
проехать 50 км, т.е. его сможет довести мотоциклист
за 1 час.
Второй едет на мотоцикле с самого начала 1 час и
везет с собой третьего. Они проедут 50 км,
оставшиеся 10 км третий пройдет за 2 часа пешком, а
второй вернется за первым (меньше, чем 1 час, так
до встречи с ним останется меньше 50 км и довезет
первого до конечного пункта)
4. Отработка умений решать задачи
Задача №1
Из пунктов А и В расстояние между которыми 320 км отправились одновременно мотоциклист и автомобилист. Скорость автомобиля 52 км/ч а мотоцикла 40 км/ч, какое расстояние будет между ними через 2 часа?
Вопрос учителя: как могут двигаться объекты?
Ответы учеников:
– На встречу друг другу
– В противоположные стороны
– В одном направлении вдогонку
– В одном направлении с отставанием
Класс делится на 4 группы. Каждой группе предлагается один из четырех вариантов движения объектов, необходимо:
- Смоделировать задачу
- Решить с полным объяснением
- Защитить решение у доски
1 группа (движение на встречу друг другу)
Решение:
1) 52 + 40 = 92 (км/ч) – скорость сближения.
2) 92 * 2 = 184 (км) – проедут автомобилист и
мотоциклист за 2 часа вместе.
3) 320 – 184 = 136 (км) – расстояние между
автомобилистом и мотоциклистом через 2 часа.
Ответ: 136 км.
2 группа (движение в противоположные стороны)
Решение:
1) 52 + 40 = 92 (км/ч) – скорость удаления.
2) 92 * 2 = 184 (км) – проедут автомобилист и
мотоциклист за 2 часа вместе.
3) 320 + 184 = 504 (км) – расстояние между автомобилистом
и мотоциклистом через 2 часа.
Ответ: 504 км.
3 группа (движение в одном направлении вдогонку)
Решение:
1) 52 – 40 = 12 (км/ч) – скорость сближения.
2) 12 * 2 = 24 (км) – расстояние на которое
автомобилист приблизится к мотоциклисту.
3) 320 – 24 = 296 (км) – расстояние между
автомобилистом и мотоциклистом через 2 часа.
Ответ: 296 км.
4 группа (движение в одном направлении с отставанием)
Решение:
1) 52 – 40 = 12 (км/ч) – скорость удаления.
2) 12 * 2 = 24 (км) – расстояние на которое
автомобилист удалится от мотоциклиста за 2 часа.
3) 320 + 24 = 344 (км) – расстояние между автомобилистом
и мотоциклистом через 2 часа.
Ответ: 344 км.
Итак, задача может иметь ответы: 136км, 504 км, 296 км, 344 км.
Задача №2
Два охотника отправились одновременно навстречу друг другу и двух деревень, расстояние между которыми 18 км. Первый шел со скоростью 5 км/ч, второй 4 км/ч. Первый взял с собой собаку, которая бегала со скоростью 8 км/ч. Собака сразу же побежала на встречу второму охотнику и встретив его, повернула и стой же скоростью побежала на встречу своему хозяину. Встретила его, повернула и побежала на встречу другому. Так она бегала от одного охотника к другому, пока те не встретились. Сколько км пробежала собака?
Обсуждение задачи:
Вопрос: Что нужно знать, чтобы найти какое
расстояние пробежала собака?
Ответ: Нужно скорость собаки и время которое
она пробежала
Вопрос: Что мы знаем и что не знаем?
Ответ: Знаем скорость собаки – 8 км/ч, не
знаем время?
Вопрос: Как время собаки связанно с временем
движения охотников?
Ответ: Время движения собаки равно времени,
через которое встретились охотники.
Решение:
- 18 / (5 + 4) = 2 (ч) – время через которое охотники встретились.
- 2 * 8 = 16 (км) – пробежала собака.
Ответ: 16 км.
5. Самостоятельная работа
Вариант I
Из пунктов А и В, расстояние между которыми 21 км, отправляются в путь одновременно пешеход из В и вдогонку ему велосипедист из А и движутся со скоростью: пешеход 5 км/ч, велосипедист 12 км/ч (Рис). На сколько километров уменьшится расстояние между ними через 3ч?
Решение:
1) 12 – 5 = 7 (км/ч) – скорость сближения
2) 7 * 3 = 21 (км) – на столько уменьшится расстояние
между велосипедистом и пешеходом через 3 ч.
Ответ: на 21 км
Вариант II
Велосипедист и пешеход отправились в путь одновременно в одном направлении из двух колхозов, расстояние между которыми 24 км. Велосипедист ехал вдогонку пешеходу со скоростью 11 км/ч, а пешеход шел со скоростью 5 км/ч. Через сколько часов после своего выезда велосипедист догонит пешехода?
Решение:
1) 11 – 5 = 6 (км/ч) – скорость сближения
2) 24 : 6 = 4 (ч) – через столько часов велосипедист
догонит пешехода
Ответ: через 4 ч.
6. Постановка домашнего задания
№642, №650 (Н.Я. Виленкин, В. И. Жохов и др. математика 5 класс, Мнемозина, 2008г.)
Дополнительная задача:
Из А в В отправились одновременно 2 человека: один пешком, а другой на велосипеде. В то же время из В в А выехал автомобиль, который встретился с велосипедистом через 4 часа, а с пешеходом через 5 часов после своего выезда из В. Найти расстояние от А до В, зная что скорость пешехода 6 км/ч, а велосипедиста 15 км/ч.
Решение:
- 15 * 4 = 60 (км) – на таком расстояние находился автомобист от А через 4 часа.
- 6 * 5 = 30 (км) – на таком расстоянии находил автомобилист от А через 5 часов.
- 60 – 30 = 30 (км/ч) – скорость автомобиля.
- 15 + 30 = 45 (км/ч) – скорость сближения автомобилиста и велосипедиста.
- 45 * 4 = 180 (км) – расстояние от А до В.
Ответ: 180 км.
7. Подведение итогов урока
urok.1sept.ru
Задачи по математике 5 класс на скорость время расстояние с решением
Следующий способ, также актуальный для любого треугольника, позволяет найти площадь треугольника через две стороны и угол между ними. Доказательство этому проистекает из формулы с высотой – проводим высоту на любую из известных сторон и через синус угла ? получаем, что h=a?sin? .
Задачи на движения (5 класс)
УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ
От проекта «Инфоурок» с указанием данных образовательной лицензии, что важно при прохождении аттестации.
Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.
Список всех тестов можно посмотреть тут — https://infourok. ru/tests
Описание презентации по отдельным слайдам:
Урок математики в 5 классе «Решение задач на движение»
Цели урока: Закрепить и развивать навыки решения задач на движение; Закрепить знание единиц измерения расстояний, времени, скорости; Воспитывать самостоятельность, аккуратность, внимательность; Развивать память, наблюдательность, мышление; Оборудование: экран, компьютер, мультимедийный проектор
I. РАЗМИНКА 1. Выберите правильное утверждение: А) Скорость – это расстояние между двумя точками; Б) Скорость – это расстояние, пройденное телом за единицу времени; В) Скорость – это быстрая езда. 2. Заполните таблицу Скорость Время Расстояние 15 км/ч 3 ч 9 ч 270 км 45 км/ч 180 км 50 км/ч 1 сут
Движение в противоположном направлении – на удаление Движение в противоположном направлении – навстречу друг другу Движение в одном направлении – с отставанием Движение в одном направлении – вдогонку Что общего? есть объекты движения, есть величины: скорость, время, расстояние В чём различия? направление движения объектов пункт отправления объектов время отправления значения величин и единицы их измерения Какие виды задач на движение существуют? Что общего и в чём различие этих движений?
СКОРОСТЬ V= S : t ВРЕМЯ t = S : V РАССТОЯНИЕ S = V × t Основные формулы:
Движение навстречу друг другу Скорость сближения показывает на сколько километров в час объекты, о которых идет речь в задаче сближаются друг с другом: vсбл.= v1 + v2
Из двух сел, расстояние между которыми 130 км, одновременно навстречу друг другу вышли два спортсмена. Их скорости 14 км/ч и 16 км/ч. На сколько километров в час спортсмены сближаются друг с другом? 130 км Решение: vсбл.= v1 + v2 = 14 + 16 = 30 км/ч
560 м t = 560 / 80 = 7 мин vсбл. = v1+v2 vсбл.= 30 + 50 = 80 м/мин
Из двух городов, расстояние между которым 1800 км, одновременно навстречу друг другу вылетели два вертолёта. Скорость первого вертолёта равна 200км/ч, а скорость второго составляет 80% скорости первого. Через сколько времени после вылета расстояние между вертолётами сократ
poiskvstavropole.ru
Текстовые задачи на движение 5 класс
Задачи на движение.
1. Из двух поселков навстречу друг другу движутся два мотоциклиста. Скорость одного из них 45км/ч, а другого 55км/ч. Через сколько часов они встретятся, если расстояние между поселками 400 км?
2..Из двух поселков, расстояние между которыми 80 км, навстречу друг другу выехали два велосипедиста. Скорость одного 5км/ч, а скорость другого на 10км/ч больше. Через сколько часов велосипедисты встретятся?
3.Из двух пунктов навстречу друг другу выехали два лыжника. Скорость одного лыжника12км/ч, что в 2 раза больше, чем скорость второго. Чему равно расстояние между пунктами, если они встретились через 3 часа?
4.Из двух городов, расстояние между которыми 24 км, вышли навстречу друг другу велосипедист и пешеход. Их встреча произошла через 3 часа после выхода. Найдите скорость велосипедиста, если скорость пешехода 3км/ч.
5.Из двух пунктов, расстояние между которыми 30 км, в одном направлении выехали велосипедист и мотоциклист. Скорость мотоциклиста 20км/ч, скорость велосипедиста 5км/ч. Через сколько часов мотоциклист догонит велосипедиста?
6.Из двух городов, расстояние между которыми 40 км .Выехали грузовой и легковой автомобили в одном направлении. Скорость грузового 40 км/ч, скорость легкового 60км/ч.Догонит ли легковая машина грузовую за 2 часа?
7.Из двух деревень. расстояние между которыми 20км. в одном направлении вышли пешеход и велосипедист. Скорость пешехода 3км/ч. Найдите скорость велосипедиста, если он догнал пешехода за 4 часа.
8.Из двух городов, расстояние между которыми 45 км, в одном направлении выехали два мотоциклиста. Скорость одного из них 35км/ч. С какой скорость должен ехать другой мотоциклист, чтобы догнать первого через 3 часа?
9.Из одного пункта в противоположных направлениях выехали 2 автомашины. Скорость одной – 63км/ч, а другой 82 км/ч. Какое расстояние будет между ними через 2 часа?
10.С одной станции в противоположных направлениях вышли два поезда. Через 3 часа расстояние между ними стало 315км. Найдите скорость второго поезда, если скорость первого 45км/ч.
11.Два велосипедиста выехали со стадиона в противоположных направлениях. Скорость одного 15км/ч, скорость другого 18км/ч. Через какое время расстояние между ними будет 132км.?
12.Поезд преодолевает расстояние в 300км, за тоже время, что и автомобиль преодолевает расстояние в 200км, двигаясь со скоростью 50км/ч. На сколько скорость поезда больше скорости автомобиля.?
13.Двигаясь на велосипеде со скоростью 12км/ч в течении 5 часов, можно преодолеть тоже расстояние, что и на мотоцикле за 2 часа. Найдите скорость мотоцикла.
14. Машина преодолевает расстояние в 250км , за тоже время, что и пешеход проходит 25км со скоростью 5км/ч. Во сколько раз скорость машины больше скорости пешехода?
15. От деревни до города велосипедист ехал4ч со скоростью 12км/ч. Сколько времени он потратит на обратный путь, если увеличит скорость на 4 км/ч?
infourok.ru
Задачи на скорость время расстояние 5 класс с решением и ответами
В равнобедренном треугольнике биссектриса, проведённая к боковой стороне, делит её в отношении 5 : 8, считая от вершины. Найдите длину основания данного треугольника, если радиус его вписанной окружности равен 2. Дано: АВС — равнобедренный треугольник (см. рисунок), АВ = ВС, AD.
Сайт учителя математики Парамзиной Ольги Владимировны
ЗАДАЧИ НА ДВИЖЕНИЯ
Антон и Иван отправились навстречу друг другу из двух пунктов, расстояние между которыми равно 72 км.
А) На какое расстояние они сблизятся за 1ч, 2ч?
Б) Через сколько часов они встретятся?
4 + 20 = 24 (км/ч) – за 1 час – Скорость сближения
24 ? 2 = 48 (км) – будут через 2 часа
72 : 24 = 3 (ч) – они встретятся
От места встречи Иван и Антон отправились одновременно в противоположных направлениях друг от друга. На какое расстояние они удалятся друг от друга за 1 ч, за 2 ч?
За каждый час расстояние между ними будет увеличиваться на
24 ? 2 = 48 (км) – расстояние через 2 часа.
Вывод: при движении в разных направлениях
Антон и Иван отправились одновременно из двух пунктов, расстояние между которыми 72 км., движутся в одном направлении так, что Иван догоняет Антона.
А) На какое расстояние они сблизятся за 1 ч, 2 ч?
Б) Через сколько часов Иван догонит Антона?
Расстояние каждый час будет уменьшаться на
16 ? 2 = 32 (км) – расстояние через 2 часа
– Иван догонит Антона
После того как Иван догнал Антона, они продолжали движение в одном направлении, так что Иван удаляется от Антона. На какое расстояние они удалятся друг от друга за 1 ч, за 2 ч, за 3 ч?
16 ? 2 = 32 (км) – расстояние через 2 часа
16 ? 3 = 48 (км) – расстояние через 3 часа
Вывод: при движении в одном направлении
4 этап. Первичное закрепление.
1. Ответить на вопросы:
- Что называется скоростью сближения? Скоростью удаления? Когда скорость сближения равна сумме скоростей путешественников? Когда она равна разности скоростей? Когда скорость удаления равна сумме скоросктей путешественников? Когда она равна разности скорстей? Антон и Иван начали движение из одного пункта. Чему равна скорость их удаления друг от джруга, если они движутся: а) в одном направлении; б) в противоположных направлениях?
2. Решить задачи №1 (устно) из листа с задачами, которые имеются на каждой парте.
3. Решить задачи №4 – 5 с проверкой у доски
4. Составить задачу по следующей схеме.
5. Самостоятельно решить задачи с листа задач. ( Каждый решает задачи своего уровня сложности)
Из одного пункта в противоположных направлениях вышли два пешехода. Скорость одного из них 5 км/ч, другого – 4 км/ч. Какое расстояние будет между ними ч
poiskvstavropole.ru
Урок математики по теме «Скорость, время, расстояние». 5-й класс
“Я люблю математику не только потому,
что
она находит применение в технике, но и потому,
что она красива”.
Петер Ропсе
Цели урока: [Приложение 1]
- Продолжать вырабатывать у учащихся умения и навыки решения задач с использованием деления натуральных чисел;
- Развивать внимание, зрительную память, логическое и образное мышление, активность учащихся на уроках;
- Продолжить развитие устной и письменной речи на уроках математики;
- Прививать интерес и любовь к предмету;
- Продолжить учиться видеть связь математики с реальной действительностью;
- Продолжить учиться применять свои знания в нестандартных ситуациях.
План урока: [Приложение 1]
- Организационный момент.
- Скорость, время, расстояние – повтор формул.
- Устная работа.
- Составление задачи по рисунку.
- Викторина.
- Задача от дяди Степы-милиционера.
- Олимпиадная задача.
- Итоги урока.
Оборудование: картинки-пояснения к задачам; ксерокопии листов с домашним заданием; презентация к уроку; костюм для дяди Степы-милиционера.
Перед началом урока предлагается высказаться 5-6 ученикам словами великих людей о математике. (Высказывания ученики ищут дома и в библиотеке, это их домашнее задание)
Ход урока
1. Повторить, как найти расстояние, время, скорость, и решить задачи.
Дорогие ребята, в 4-м классе вы решали много задач по математике связанных с движением, для решения этих задач вы пользовались формулами нахождения скорости, времени или расстояния при равномерном движении. Эта формула выглядит так: <Рисунок 8> [Приложение 1]
S = V·t.
В данной формуле S – это путь, V – скорость, а t – время. Эта формула справедлива только для случаев, когда движение было с постоянной, т.е. не изменой скоростью.
Давайте рассмотрим пример [Приложение 1], грузовик ехал из одного города в другой 3 часа с постоянной скоростью 60 км/ч. [3] Тогда для того, чтобы узнать расстояние между городами нужно умножить 3 на 60 и получим 180 км.
Теперь рассчитаем, с какой скоростью следовало ехать грузовику, чтобы проехать этот путь за 2 часа. Для этого из формулы нужно выразить скорость:
V=S/t = 180/2=90 км/ч.
Аналогично предыдущему примеру узнаем время, за которое автомобиль преодолел то же расстояние, двигаясь со скоростью 120км/ч:
t=S/V = 180/120=1,5ч.
2. Устные упражнения.
На доске оформляются краткие и наглядные условия задач, полный текст задачи ребята видят на слайде презентации [Приложение 1]
1. Из пунктов А и В навстречу друг другу выехали автомобиль со скоростью 60 км/ч и велосипедист со скоростью 15 км/ч. Встретятся ли автомобиль и велосипедист через 2 часа, если расстояние между пунктами 160 км?[2] (Решить задачу двумя способами.)<Рисунок 1> [Приложение 1]
2. Из лагеря геологоразведчиков выехал вездеход со скоростью 30 км/ч. Через 2 часа вслед за ним был послан другой вездеход. С какой скоростью он должен ехать, чтобы догнать первый через 4 часа после своего выхода? [4] <Рисунок 2> [Приложение 1]
3. По рисунку составить задачу на движение и решить ее
. [1]Рисунок задачи на слайде презентации [Приложение 1]
4. Викторина
(3 ряда – каждому ряду выдается по тексту задачи (всего 3 задачи) и карточки для наглядного составления краткой записи на доске, а также тексты всех трех задач выводятся на слайде [Приложение 1]). Ученикам необходимо решить задачу, представить наглядную краткую запись-схему у доски и предоставить ее решение.
Первый ряд: “Автомобиль “Москвич” за 3 часа может проехать 360 км. Бескрылая птица страус – лучший бегун в мире – развивает скорость до 120 км/ч. Сравните скорости автомобиля “Москвич” и страуса. [2] <Рисунок 3>
Второй ряд: “Скорость распространения света самая большая в природе – 300000 км/с. На Солнце произошла вспышка. Через какое время ее увидят на Земле, если расстояние от Земли до Солнца равно 150000000 км? [1] <Рисунок 4>
Третий ряд: “Пройденный путь пешехода S, его скорость v и время движения t связаны соотношением S = vt. Если пешеход за 4 часа прошел 24 км, то его скорость равна….? [3] <Рисунок 5>
5. Входит дядя Степа-милиционер
(Один из учеников класса, желательно посильнее который, с ним заранее разбираются задачи, и он их дома решает) и предлагает задачу из сборника задач по основам безопасности дорожного движения. <Рисунок 9>
Ширина проезжей части дороги 15 м, зеленый сигнал светофора горит 20 секунд. С какой наименьшей скоростью может двигаться пешеход с момента загорания светофора, чтобы благополучно перейти дорогу? [5] <Рисунок 6>
Решение:
1) 15 м = 1500 см
2) 1500 : 20 = 75 см/с.
Ответ: пешеход может двигаться со скоростью 75 см/с.
6. Решить олимпиадную задачу.
[Приложение 1]Из пунктов А и В, расстояние между которыми 100 км, со скоростями 20 км/ч и 30 км/ч выезжают навстречу друг другу два велосипедиста. Вместе с ними со скоростью 50 км/ч вылетают две мухи, летят до встречи, поворачивают и летят обратно до встречи с велосипедистами, снова поворачивают и т. д. Сколько километров пролетит каждая муха в направлении от А до В до того момента, когда велосипедисты встретятся? [6] <Рисунок 7>
Решение: Велосипедисты встретятся через 2 часа на расстоянии 40 км/ч от А. За это время каждая муха пролетела 100 км. Муха, вылетевшая из А, пролетела в направлении от А до В на 40 км больше, чем в обратном направлении, и поэтому от АВ она пролетела 70 км. Аналогично, вторая муха в направлении от А к В пролетела на 60 км меньше, чем в обратном, то есть 20 км.
Ответ: первая муха в направлении от А к В пролетела 70 км, вторая – 20 км.
Запасная задача! (в зависимости от способностей учеников, если останется 3 минутки свободного времени на уроке) Мотоциклист едет со скоростью 95 км/ч, а скорость велосипедиста на 76 км/ч меньше. Во сколько раз скорость мотоциклиста больше скорости велосипедиста? Кому из них легче остановиться? [2]
Решение:
1) 95 – 76 = 19 км/ч
2) 95 : 19 = 5 раз.
Ответ: в 5 раз легче остановиться велосипедисту, так как при меньшей скорости короче тормозной путь.
Итог урока: выставление оценок наиболее отличившимся ученикам, вручение памятных дипломов каждому ряду за умение работать в группах.
Домашнее задание: [Приложение 1] ученикам раздаются ксерокопии заданий.[2,3]
- Помогите французским девочкам. Однажды Жаннин и Моника поплыли по маленькой речке, отправившись из одного и того же места, но только Жаннин поплыла против течения, а Моника поплыла по течению. Оказалось, что Моника забыла снять большие деревянные бусы. Через четверть часа девочки повернули обратно. Кто же из них подберет бусы Моники: сама Моника или Жаннин? (Скорость обеих пловчих в неподвижной воде одинакова.)
- Задача от дяди Степы. Скорость легкового автомобиля 60 км/ч, а грузовика 15 км/ч. Во сколько раз скорость легкового автомобиля больше скорости грузовика? Какой автомобиль опаснее для школьника, начавшего движение по пешеходному переходу?
- Задание от “Знающего человека”. Заполнить таблицу.
Объект |
Скорость v |
Время t |
Расстояние |
urok.1sept.ru