Как научиться умножать – Как научиться быстро считать в уме любые числа: техники устного счета

Содержание

Как быстро научиться умножать в уме двузначные числа? — Викиум.ру

В эпоху калькуляторов мы стали все реже производить вычислительные операции в уме. Между тем, такие упражнения отлично развивают мышление и тренируют память. Как правильно начать умножать в уме многозначные числа, чтобы эту методику понял и взрослый и ребенок? Попробуем разобраться вместе!

Способы умножения чисел в уме существуют не один десяток лет. Выберите тот, который подходит вам наиболее всего!

Разложение чисел

Считается наиболее простым способом. Большие числа нужно разложить на тысячи, сотни, десятки и единицы и перемножить разряды между собой. Попробуем перемножить 38 и 57.

  • Сначала разложим числа на десятки и единицы. В первом случае это будет 30+8
  • Во втором 50+7
  • Умножаем десятки: 30х50=1500. Полученный результат необходимо запомнить.
  • Дальше умножаем десятки на единицы того же числа. Вот так: 30х7+8=210+400=610
  • Полученный результат снова запоминаем.
  • Дальше вспоминаем первый полученный результат: 1500. Плюсуем к нему второй полученный результат 1500 + 610 = 2110
  • Мы почти закончили! Теперь нам остается перемножить единицы (8х7=56) И полученный результат прибавляем к полученной ранее, сумме
  • 2110 + 56 = 2166

Как запомнить промежуточные результаты? Первое время, возможно, придется записывать их. Но уже через пару дней вам будет достаточно простого проговаривания вслух. После нескольких недель тренировок ваш мозг будет отлично справляться с такими задачами, и умножение не только двузначных, но и более сложных чисел, будет даваться вам легко.

 

blog.wikium.ru

Как умножать в столбик 🚩 Умножение столбиком 🚩 Математика

Основу самых сложных математических вычислений составляют четыре основных арифметических операции: вычитание, сложение, умножение и деление. При этом, несмотря на свою самостоятельность, эти операции при ближайшем рассмотрении оказываются связанными между собой. Такая связь существует, например, между сложением и умножением.
В операции умножения участвуют три основных элемента. Первый из них, который обычно называют первым множителем или множимым, представляет собой число, которое будет подвергнуто операции умножения. Второй, который именуют вторым множителем, является числом, на которое будет умножен первый множитель. Наконец, результат осуществленной операции умножения чаще всего носит название произведения.

При этом следует помнить, что сущность операции умножения фактически основывается на сложении: для ее осуществления необходимо сложить между собой определенное количество первых множителей, причем количество слагаемых этой суммы должно быть равно второму множителю. Помимо вычисления самого произведения двух рассматриваемых множителей, этот алгоритм можно использовать также для проверки получившегося результата.


Рассмотрим пример решения задачи на умножение. Предположим, по условиям задания необходимо вычислить произведение двух чисел, среди которых первый множитель равен 8, а второй 4. В соответствии с определением операции умножения, это фактически означает, что нужно 4 раза сложить цифру 8. В результате получается 32 — это и есть произведение рассматриваемых чисел, то есть результат их умножения.

Кроме того, необходимо помнить, что в отношении операции умножения действует так называемый переместительный закон, который устанавливает, что от изменения мест множителей в первоначальном примере его результат не изменится. Таким образом, можно 8 раз сложить цифру 4, получив в результате то же произведение — 32.


Понятно, что решать таким способом большое количество однотипных примеров — довольно утомительное занятие. Для того чтобы облегчить эту задачу, была придумана так называемая таблица умножения. Фактически она представляет собой перечень произведений целых положительных однозначных чисел. Проще говоря, таблица умножения — это совокупность результатов перемножения между собой всех чисел от 1 до 9. Один раз выучив эту таблицу, можно уже не прибегать к осуществлению умножения всякий раз, когда потребуется решить пример на такие простые числа, а просто вспомнить его результат.

www.kakprosto.ru

Как быстро умножать двузначные числа в уме?

Умение мгновенно считать в уме может стать бесценным подспорьем в работе и в условиях скоростных темпов жизни современного человека.

Как быстро умножать большие числа, как овладеть такими полезными навыками? У большинства вызывает затруднения устное перемножение двузначных чисел на однозначные. А о сложных арифметических расчетах и говорить нечего. Но при желании способности, заложенные в каждом человеке, можно развить. Регулярные тренировки, немного усилий и применение, разработанных учеными, эффективных методик позволят достичь потрясающих результатов.

Выбираем традиционные методы

Проверенные десятилетиями способы перемножения двузначных чисел не теряют своей актуальности. Простейшие приемы помогают миллионам обычных школьников, учащихся специализированных ВУЗов и лицеев, а также людям, занимающимся саморазвитием, усовершенствовать вычислительное мастерство.

Умножение с помощью разложения чисел

Наиболее легким способом, как быстро научиться умножать большие числа в уме, является перемножение десятков и единиц. Сначала умножаются десятки двух чисел, затем поочередно единицы и десятки. Четыре полученных числа суммируются. Для использования этого метода важно уметь запоминать результаты перемножения и складывать их в уме.

Например, для умножения 38 на 57 необходимо:

  • разложить число на (30+8)*(50+7);
  • 30*50 = 1500 – запомнить результат;
  • 30*7 + 50*8 = 210 + 400 = 610 – запомнить;
  • (1500 + 610) + 8*7 = 2110 + 56 = 2166
Естественно, необходимо отлично знать таблицу умножения, так как быстро умножать в уме этим способом не удастся без соответствующих умений.

Умножение в столбик в уме

Визуальное представление привычного перемножения в столбик многие используют при расчетах. Этот метод подойдет тем, кто умеет надолго запоминать вспомогательные числа и выполнять с ними арифметические действия. Но процесс значительно упрощается, если вы научились, как быстро умножать двузначные числа на однозначные. Для перемножения, например, 47*81 нужно:

  • 47*1 = 47 – запомнить;
  • 47*8 = 376 – запоминаем;
  • 376*10 + 47 = 3807.
Запоминать промежуточные результаты поможет проговаривание их вслух с одновременным суммированием в уме. Несмотря на сложность мысленных вычислений, после непродолжительных тренировок этот метод станет вашим любимым.

Приведенные выше способы умножения универсальны. Но знание более эффективных алгоритмов для некоторых чисел намного сократит количество расчетов.

Умножение на 11

Это, пожалуй, самый простой способ, который используется для умножения любых двузначных чисел на 11.

Достаточно между цифрами множителя вставить их сумму:
13*11 = 1(1+3)3 = 143

Если в скобках получается число больше 10, то к первой цифре добавляется единица, а из суммы в скобках вычитается 10.
28*11 = 2 (2+8) 8 = 308


Умножение больших чисел

Очень удобно перемножать числа, близкие к 100 разложением их на составляющие. Например, необходимо умножить 87 на 91.

  • Каждое число необходимо представить как разницу 100 и еще одного числа:
    (100 — 13)*(100 — 9)
    Ответ будет состоять из четырех цифр, две первые из которых – разница первого множителя и вычитаемого из второй скобки или наоборот – разница второго множителя и вычитаемого из первой скобки.
    87 – 9 = 78
    91 – 13 = 78
  • Вторые две цифры ответа — результат перемножения вычитаемых из двух скобок.13*9 = 144
  • В результате получаются числа 78 и 144. Если при записывании окончательного результата получается число из 5 цифр вторую и третью цифру суммируем. Результат: 87*91 = 7944.
Это самые простые способы перемножения. После многократного их применения, доведения вычислений до автоматизма можно осваивать более сложные техники. И через некоторое время проблема, как быстро умножить двузначные числа перестанет вас волновать, а память и логика существенно улучшатся.

interesno.cc

Урок 3. Традиционное умножение в уме

Давайте рассмотрим, как можно умножать двузначные числа, используя традиционные методы, которым нас обучают в школе. Некоторые из этих методов, могут позволить вам быстро перемножать в уме двузначные числа при достаточной тренировке. Знать эти методы полезно. Однако важно понимать, что это лишь вершина айсберга. В данном уроке рассмотрены наиболее популярные приемы умножения двузначных чисел.

Первый способ – раскладка на десятки и единицы

Самым простым для понимания способом умножения двузначных чисел является тот, которому нас научили в школе. Он заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

Например: 63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 + 3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия. Сначала умножаются десятки друг на друга. Потом складываются 2 произведения единиц на десятки. Затем прибавляется произведение единиц. Схематично это можно описать так:

  • Первое действие: 60*80 = 4800 — запоминаем
  • Второе действие: 60*5+3*80 = 540 – запоминаем
  • Третье действие: (4800+540)+3*5= 5355 – ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Вывод. Не трудно убедиться в том, что этот способ не является самым эффективным, то есть позволяющим при наименьших действиях получить правильный результат. Следует принять во внимание другие способы.

Второй способ – арифметические подгонки

Приведение примера к удобному виду является достаточно распространенным способом счета в уме. Подгонять пример удобно, когда вам нужно быстро найти примерный или точный ответ. Желание подгонять примеры под определенные математические закономерности часто воспитывается на математических кафедрах в университетах или в школах в классах с математическим уклоном. Людей учат находить простые и удобные алгоритмы решения различных задач. Вот некоторые примеры подгонки:

Пример 49*49 может решаться так: (49*100)/2-49. Сначала считается 49 на сто – 4900. Затем 4900 делится на 2, что равняется 2450, затем вычитается 49. Итого 2401.

Произведение 56*92 решается так: 56*100-56*2*2*2. Получается: 56*2= 112*2=224*2=448. Из 5600 вычитаем 448, получаем 5152.

Этот способ может оказаться эффективнее предыдущего только в случае, если вы владеете устным счетом на базе перемножения двузначных чисел на однозначные и можете держать в уме одновременно несколько результатов. К тому же приходится тратить время на поиск алгоритма решения, а также уходит много внимания за правильным соблюдением этого алгоритма.

Вывод. Способ, когда вы стараетесь умножить 2 числа, раскладывая их на более простые арифметические процедуры, отлично тренирует ваши мозги, но связан с большими мысленными затратами, а риск получить неправильный результат выше, чем при первом методе.

Третий способ — мысленная визуализация умножения в столбик

56*67 – посчитаем в столбик.

Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа. Но его можно упростить. Во втором уроке рассказывалось, что важно уметь быстро умножать однозначные числа на двузначные. Если вы уже умеете это делать на автомате, то счет в столбик в уме для вас будет не таким уж и трудным. Алгоритм таков

Первое действие: 56*7 = 350+42=392 – запомните и не забывайте до третьего действия.

Второе действие: 56*6=300+36=336 (ну или 392-56)

Третье действие: 336*10+392=3360+392=3 752 – тут посложнее, но вы можете начинать называть первое число, в котором уверены – «три тысячи…», а пока говорите, складывайте 360 и 392.

Вывод: счет в столбик напрямую сложен, но вы можете, при наличии навыка быстрого умножения двузначных чисел на однозначные, его упросить. Добавьте в свой арсенал и этот метод. В упрощенном виде счет в столбик является некоторой модификацией первого метода. Что лучше – вопрос на любителя.

Как можно заметить, ни один из описанных выше способов не позволяет считать в уме достаточно быстро и точно все примеры умножения двузначных чисел. Нужно понимать, что использование традиционных способов умножения для счета в уме не всегда является рациональным, то есть позволяющим при наименьших усилиях достигать максимального результата.

Евгений Буянов

4brain.ru

Устный счет, или Как научиться быстро считать в уме большие числа

Техника быстрого счета

Зачем нужен устный счет, если на дворе 21 век, и всевозможные гаджеты способны едва ли не молниеносно производить любые арифметические операции? Можно даже не тыкать в смартфон пальцем, а дать голосовую команду – и немедленно получить правильный ответ. Сейчас это успешно проделывают даже школьники младших классов, которым лень самостоятельно делить, умножать, складывать и вычитать.

Но у этой медали есть и обратная сторона: ученые предупреждают, что если мозг не тренировать, не нагружать работой и облегчать ему задачи, он начинает лениться, его мыслительные способности снижаются. Точно так же без физических тренировок слабеют и наши мышцы.

О пользе математики говорил еще Михаил Васильевич Ломоносов, называющий ее прекраснейшей из наук: «Математику уже за то любить надо, что она ум в порядок приводит».

Устный счет развивает внимание, память, быстроту реакции. Недаром появляются все новые и новые методики быстрого устного счета, предназначенные и для детей, и для взрослых. Одна из них – японская система устного счета, в которой используются древние японские счеты «соробан». Сама методика была разработана в Японии 25 лет назад, а сейчас ее с успехом применяют и в некоторых наших школах устного счета. В ней используются визуальные образы, каждый из которых соответствует определенному числу. Такое обучение развивает правое полушарие мозга, отвечающее за пространственное мышление, построение аналогий и пр.

Любопытно, что всего за два года ученики таких школ (сюда принимают детей в возрасте 4–11 лет) учатся совершать арифметические действия с 2-значными, а то и 3-значными цифрами. Малыши, не знающие таблицы умножения, здесь умеют умножать. Они складывают и вычитают большие числа, не записывая их столбик. Но, конечно же, цель обучения – это сбалансированное развитие правого и левого полушарий головного мозга.

Овладеть устным счетом можно и с помощью задачника «1001 задача для умственного счета в школе», составленного еще в 19 веке сельским учителем и известным педагогом-просветителем Сергеем Александровичем Рачинским. В пользу этого задачника говорит тот факт, что он выдержал несколько изданий. Эту книгу можно найти и скачать в Интернете.

Люди, практикующиеся в быстром счете, рекомендуют книгу Якова Трахтенберга «Система быстрого счета». История создания этой системы весьма необычна. Чтобы выжить в концлагере, куда его отправили нацисты в 1941 г., и не утратить ясность ума, цюрихский профессор математики занялся разработкой алгоритмов математических действий, позволяющих быстро считать в уме. А после войны написал книгу, в которой система быстрого счета изложена настолько понятно и доступно, что она и сейчас пользуется спросом.

Хорошие отзывы и о книге Якова Перельмана «Быстрый счет. Тридцать простых примеров устного счета». Главы этой книге посвящены умножению на однозначное и двузначное число, в частности умножению на 4 и 8, 5 и 25, на 11/2, 11/4, ѕ, делению на 15, возведению в квадрат, вычислениям по формуле.

Простейшие способы устного счета

Быстрее овладеют этим навыком люди, обладающие определенными способностями, а именно: способностью к логическому мышлению, умением сконцентрироваться и сохранять в краткосрочной памяти несколько образов одновременно.

Не менее важно знание специальных алгоритмов действийи некоторых математических законов, позволяющих считать быстро, а также умение выбрать наиболее эффективный для данной ситуации.

Ну и, конечно же, не обойтись без регулярных тренировок!

В числе самых распространенных приемов быстрого счета следующие:

1. Умножение двузначного числа на однозначное

Умножить двузначное число на однозначное проще всего, разложив его на две составляющие. Например, 45 — на 40 и 5. Далее каждую составляющую умножаем на нужное число, к примеру на 7, отдельно. Получаем: 40 × 7 = 280; 5 × 7 = 35. Затем получившиеся результаты складываем: 280 + 35 = 315.

2. Умножение трехзначного числа

Умножать в уме трехзначное число также намного проще, если разложить его на составляющие, но представив множимое так, чтобы с ним легче было производить математические действия. Например, нам нужно умножить 137 на 5.

Представляем 137 как 140 − 3. То есть получается, что мы теперь должны умножить на 5 не 137, а 140 − 3. Или (140 − 3) х 5.

Ну а дальше каждую часть умножаем отдельно: 140 × 5 − 3 × 5 = 700 − 15 = 685.

Зная таблицу умножения в пределах 19 х 9, можно сосчитать еще быстрее. Раскладываем число 137 на 130 и 7. Далее умножаем на 5 сначала 130, а затем 7, и результаты складываем. То есть 137 × 5 = 130 × 5 + 7 × 5 = 650 + 35 = 685.

Разложить можно не только множимое, но и множитель. Например, нам нужно умножить 235 на 6. Шесть мы получаем, умножив 2 на 3. Таким образом, 235 сначала множим на 2 и получаем 470, а затем 470 умножаем на 3. Итого 1410.

Это же действие можно произвести иначе, представив 235 как 200 и 35. Получается 235 × 6 = (200 + 35) × 6 = 200 × 6 + 35 × 6 = 1200 + 210 = 1410.

Таким же образом, раскладывая числа на составляющие, можно выполнять сложение, вычитание и деление.

3. Умножение на 10-ть

Как умножать на 10, известно всем: просто приписать к множимому нуль. Например, 15 × 10 = 150. Исходя из этого, не менее просто умножать и на 9. Сначала к множимому припишем 0, то есть умножим его на 10, а затем от получившегося числа отнимем множимое: 150 × 9 = 150 × 10 = 1500 − 150 = 1 350.

4. Умножение на 5-ть

Легко умножать и на 5. Следует всего лишь умножить нужно число на 10, а получившийся результат разделить на 2.

5. Умножение на 11-ть

Интересно умножать двузначные числа на 11. Возьмем, к примеру, 18. Мысленно раздвинем 1 и 8, и между ними впишем сумму этих чисел: 1 + 8. У нас получится 1 (1 + 8) 8. Или 198.

6. Умножение на 1,5

При необходимости умножить какое-нибудь число на 1,5 делим его на два и прибавляем получившуюся половинку к целому: 24 × 1,5 = 24 / 2 + 24 = 36.

Это лишь самые простые способы устного счета, с помощью которых мы можем тренировать свой мозг в быту. Например, подсчитывать стоимость покупок, стоя в очереди в кассу. Или же совершать математические действия с цифрами на номерах проезжающих мимо машин. Те же, кто любит «играться» с цифрами и хочет развить свои мыслительные способности, могут обратиться к книгам вышеупомянутых авторов.

© Тимошенко Елена, BBF.ruм

bbf.ru

Способы быстрого устного умножения чисел

Некоторые способы быстрого устного умножения мы уже с Вами разобрали, теперь давайте подробнее разберемся, как быстро умножать числа в уме, используя различные вспомогательные способы. Некоторые способы Вы, возможно, уже знаете, а некоторые из них довольно экзотические, например, древний китайский способ умножения чисел.

Раскладка по разрядам

Является самым простым приемом быстрого умножения двухзначных чисел. Оба множителя нужно разбить на десятки и единицы, а затем все эти новые числа перемножить друг на друга.

Данный способ требует умения удерживать в памяти одновременно до четырех чисел, и делать с этими числами вычисления.

К примеру, нужно перемножить числа 38 и 56. Делаем это следующим образом:

38 * 56 = (30 + 8 ) * (50 + 6) = 30 * 50 + 8 * 50 + 30 * 6 + 8 * 6 = 1500 + 400 + 180 + 48 = 2128 Еще проще будет делать устное умножение двухзначных чисел в три действия. Сначала нужно перемножить десятки, затем прибавить два произведения единиц на десятки, и затем прибавить произведение единиц на единицы. Выглядит это так: 38 * 56 = (30 + 8 ) * (50 + 6) = 30 * 50 + (8 * 50 + 30 * 6) + 8 * 6 = 1500 + 580 + 48 = 2128 Для того, чтобы успешно пользоваться этим способом, нужно хорошо знать таблицу умножения, уметь быстро складывать двухзначные и трехзначные числа, и переключаться между математическими действиями, не забывая промежуточные результаты. Последнее умение достигается с помощью тренировки зрительной памяти и визуализации.

Данный способ не самый быстрый и эффективный, потому стоит изучить еще и другие способы устного умножения.

Подгонка чисел

Можно попробовать привести арифметическое вычисление к более удобному виду. Например, произведение чисел 35 и 49 можно себе представить таким образом: 35 * 49 = (35 * 100) / 2 — 35 = 1715
Этот способ может оказаться более эффективным, чем предыдущий, но он не универсальный, и подходит не ко всем случаям. Не всегда можно найти подходящий алгоритм для упрощения задачи.

На эту тему вспомнился анекдот про то, как математик проплывал по реке мимо фермы, и заявил собеседникам, что ему удалось быстро подсчитать количество овец в загоне, 1358 овец. Когда его спросили, как ему это удалось, он сказал, что все просто — нужно подсчитать количество ног, и разделить на 4.

Визуализация умножения в столбик

Этот один из самых универсальных способов устного умножения чисел, развивающий пространственное воображение и память. Для начала следует научиться умножать в столбик в уме двухзначные числа на однозначные. После этого Вы легко сможете умножать двухзначные числа в три действия. Сначала двухзначное число нужно умножить на десятки другого числа, затем умножить на единицы другого числа, и после этого просуммировать полученные числа.

Выглядит это таким образом: 38 * 56 = (38 * 5) * 10 + 38 * 6 = 1900 + 228 = 2128

Визуализация с расстановкой чисел

Очень интересный способ перемножения двухзначных чисел следующий. Нужно последовательно перемножить цифры в числах, чтобы получились сотни, единицы и десятки.

Допустим, Вам нужно умножить 35 на 49.

Сначала перемножаете 3 на 4, получаете 12, затем 5 и 9, получаете 45. Записываете 12 и 5 , с пробелом между ними, а 4 запоминаете.

Получаете: 12 __ 5 (запоминаете 4).

Теперь умножаете 3 на 9, и 5 на 4, и суммируете: 3 * 9 + 5 * 4 = 27 + 20 = 47.

Теперь нужно к 47 прибавить 4, которое мы запомнили. Получаем 51.

Пишем 1 в середине, а 5 прибавляем к 12, получаем 17.

Итого, число, которое мы искали, 1715, оно является ответом:

35 * 49 = 1715
Попробуйте таким же образом перемножить в уме: 18 * 34, 45 * 91, 31 * 52.

Китайское, или японское, умножение

В азиатских странах принято умножать числа не в столбик, а рисуя линии. Для восточных культур важно стремление к созерцанию, и визуализации, поэтому, наверное, они и придумали такой красивый метод, позволяющий перемножать любые числа. Сложен этот способ только на первый взгляд. На самом деле, большая наглядность позволяет использовать этот способ гораздо эффективнее, чем умножение в столбик.

Кроме того, знание этого древнего восточного етода повышает Вашу эрудицию. Согласитесь, не каждый может похвастаться тем, что знает древнюю систему умножения, которой китайцы пользовались еще 3000 лет назад.

Видео о том, как китайцы перемножают числа

Более подробные сведения Вы можете получить в разделах «Все курсы» и «Полезности», в которые можно перейти через верхнее меню сайта. В этих разделах статьи сгруппированы по тематикам в блоки, содержащие максимально развернутую (насколько это было возможно) информацию по различным темам.

Также Вы можете подписаться на блог, и узнавать о всех новых статьях.
Это не займет много времени. Просто нажмите на ссылку ниже:
    Подписаться на блог: Дорога к Бизнесу за Компьютером

Проголосуйте и поделитесь с друзьями анонсом статьи на Facebook:  

pro444.ru

Как научиться быстро считать в уме?

Знания, полученные на уроках алгебры и геометрии, в жизни люди применяют крайне редко. Наиболее ценное и необходимое умение, связанное с математикой – способность быстро считать в уме, поэтому стоит разобраться, как этому научиться. В обычной жизни это позволяет быстро подсчитывать сдачу, рассчитывать время и т.п.

Лучше всего развивать способности с самого детства, когда мозг намного быстрее усваивает информацию. Есть несколько эффективных методик, которыми пользуется много людей.

Как научиться очень быстро считать в уме?

Чтобы достичь хороших результатов, необходимо проводить тренировки регулярно. После достижения определенных целей стоит усложнять задание. Большое значение имеют способности человека, то есть умение удерживать в памяти сразу несколько вещей и концентрировать внимание. Наибольший успех могут достичь люди с математическим складом ума. Чтобы быстро научиться считать, необходимо хорошо знать таблицу умножения.

Наиболее популярные методики подсчета:

  1. Разберемся, как быстро считать двухзначные числа в уме, если нужно умножить на 11. Чтобы разобраться в методике, рассмотрим один пример: 13 умножить на 11. Задача заключается в том, что между цифрами 1 и 3 нужно вставить их сумму, то есть 4. В итоге получается, что 13х11=143. Когда сумма цифр дает двузначное число, к примеру, если на 11 умножать 69, то 6+9=15, тогда вставлять нужно только вторую цифру, то есть 5, а к первой цифре множителя следует добавить 1. В итоге получает 69х11=759. Есть еще один способ умножения числа на 11. Для начала следует произвести умножение на 10, а затем, прибавить к нему исходное число. Например, 14х11=14х10+14=154.
  2. Еще один способ, как быстро считать в уме большие числа, работает для умножения на 5. Это правило подходит для любого числа, которое для начала необходимо разделить на 2. Если в итоге получилось целое число, то нужно приписать в конце ноль. К примеру, чтобы узнать, сколько будет 504 умножить на 5. Для этого 504/2=252 и приписываем в конце 0. В итоге получается 504х5=2520. Если же при делении числа получается не целое число, то нужно просто убрать полученную запятую. К примеру, чтобы узнать, сколько будет 173 умножить на 5, нужно 173/2=86,5, а после просто убрать запятую, и получается, что 173х5=865.
  3. Узнаем, как быстро считать в уме двузначные числа, путем сложения. Сначала необходимо произвести сложение десятков, а затем, единиц. Для получения итогового результата, следует прибавить два первых результата. К примеру, разберемся, сколько будет 13+78. Первое действие: 10+70=80, а второе: 3+8=11. Итоговый результат будет таким: 80+11=91. Этим методом можно пользоваться, когда из одного числа нужно вычесть другое.

Еще одна актуальная тема – как быстро считать проценты в уме. Опять же для лучшего понимания рассмотрим пример, как найти 15% от какого-либо числа. Вначале следует определить 10%, то есть разделить на 10 и прибавить половину от результата –5%. Найдем 15% от 460: чтобы найти 10%, делить число на 10, получается 46. Следующий шаг – находим половину: 46/2=23. В итоге 46+23=69, что и является 15% от 460.

Есть еще один метод, как высчитывать проценты. Например, если нужно определить, сколько будет 6% от 400. Для начала стоит выяснить 6% от 100 и это будет 6. Чтобы узнать 6% от 400, то нужно 6х4=24.

Если нужно найти 6% от 50, то следует пользоваться таким алгоритмом: 6% от 100 это 6, а для 50, это половина, то есть 6/2=3. В итоге получается, что 6% от 50, это 3.

Если число, от которого стоит найти процент меньше 100, то следует просто перенести запятую влево. К примеру, чтобы найти 6% от 35. Для начала найдите 6% от 350 и это будет 21. Значение же 6% для 35, это 2,1.

 

womanadvice.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о