Как научиться решать деление столбиком: Как делить в столбик? Как объяснить ребенку деление столбиком? Деление на однозначное, двузначное, трехзначное число, деление с остатком. Деление натуральных чисел столбиком, примеры, решения

Содержание

Как научить деление столбиком. Как научить ребенка делению в математике

В классе много детей, и у учителя не всегда получается уделить внимание каждому. Однако если ребенок что-то пропустит или не поймет, то это затруднит изучение дальнейших тем. В этом случае на помощь ему должны прийти родители. К примеру, как научить ребенка делению? Сначала математический процесс лучше объяснять в игровой форме. Затем можно переходить к более сложным задачам.

Как научить ребенка делению в форме игры

Скучные учебники лучше отложить в сторону на время. Малыш быстро усвоит сложный материал, если мама или папа превратит обучение в интересную игру. Итак, как научить ребенка делению?

Для этого применяют упражнение:

  1. Для проведения домашних занятий следует запастись конфетами или яблоками. Также понадобятся игрушки, с которыми любит возиться ученик. Нужно попросить малыша, чтобы он разделил четыре яблока или конфеты между двумя-тремя мишками или куклами. Затем количество предметов, подлежащих делению, увеличивается до шести, восьми, десяти.
  2. Итак, игрушки «получили» конфеты или яблоки. Теперь ученик должен посчитать, сколько досталось каждому мишке или кукле. Обязательно следует подвести итог. Предположим, что игрушек было три и между ними были разделены шесть конфет. Следовательно, каждая «получила» по две. Нужно объяснить ребенку, что «разделить» означает всем раздать поровну.
  3. Как научить ребенка делению дома? Для лучшего усвоения материала стоит изменить условия задачи. К примеру, нужно дать малышу шесть яблок и попросить распределить их между бабушкой, дедушкой и кошкой поровну. Затем это же количество предметов следует предложить ему поделить между бабушкой и животным. Обязательно следует объяснить ученику, почему результат оказался разным.

Деление с остатком

Итак, малыш хорошо справляется с простыми задачами. Это означает, что пора использовать более сложные примеры. Как научить ребенка делению с остатком? Скажем, можно дать ученику пять конфет и предложить угостить ими дедушку и бабушку в одинаковом количестве. Остается одно лакомство, которое малыш забирает себе.

На этом примере можно объяснить ребенку, что одна конфета и является остатком. Затем можно предложить малышу, к примеру, разделить между бабушкой, дедом и кошкой восемь конфет поровну.

На примере таблицы умножения

Как научить ребенка делению, если он уже знает умножение? Малыш должен понять, что этот процесс подразумевает действия, противоположные умножению:

  1. Для начала пусть ученик умножит число 6 на 3. У него получится 18.
  2. Далее нужно обратить внимание ребенка на то, что число 18 является результатом умножения вышеуказанных чисел.
  3. Теперь следует разделить 18 на 6. Ребенок получит 3. Это станет для него наглядным примером того, что деление представляет собой действие, противоположное умножению.

Для закрепления материала непременно стоит рассмотреть примеры с другими цифрами. Деление освоится легко, если школьник хорошо знает умножение и сумеет понять связь между математическими действиями.

Определение понятий

Как научить ребенка делению чисел? Что ему необходимо знать? Малыш должен запомнить и названия чисел, которые участвуют в этом процессе.

  1. Делимое. Так называется число, которое необходимо разделить.
  2. Делитель. Это число, на которое разделяется делимое.
  3. Частное. Так называется результат деления.

Для наглядности стоит вновь вернуться к примерам с лакомствами и игрушками. Ребенок должен понять, что делимое — это количество конфет или яблок, которое следует раздать. Делитель же — число игрушек, на которое они делятся.

Усложняем задачу

От простого следует переходить к сложному. Как научить ребенка делению в столбик? К обучению следует переходить уже тогда, когда малыш хорошо усвоит таблицу умножения. Предположим, что нужно разделить 110 на 5.

Эти числа необходимо написать на чистом листке бумаги, а затем разделить их перпендикулярными линиями.

  1. Далее нужно объяснить ребенку, что число 110 является делимым, а число 5 — делителем.
  2. Первая цифра числа 110 — 1, ее нельзя разделить на 5. Следовательно, необходимо взять следующую цифру. Получится число 11, в которое 5 может поместиться два раза.
  3. В столбике под пятеркой нужно записать цифру 2. Далее необходимо попросить ученика умножить 5 на 2. У него получится 10. Эту цифру следует записать под числом 11.
  4. Затем вместе с ребенком нужно вычесть число 10 из 11. Получится 1, возле этой цифры нужно записать оставшийся нолик в столбике. Получится 10.
  5. Далее нужно разделить с малышом 10 на 5. Результат — 2, эту цифру нужно записать под пятеркой. Результатом деления является число 22.

Обучение лучше всего начинать с цифр, которые можно делить без остатка — однозначных, двузначных. Когда ребенок будет хорошо справляться с простыми операциями, задачу можно усложнить.

Алгоритм деления в столбик

Деление в столбик — задача, с которой поможет справиться знание простого алгоритма.

  1. Для начала следует понять, где в примере делимое, а где делитель.
  2. Далее делимое и делитель следует записать под «уголок». Чтобы ребенок не путался на начальном этапе обучения, можно сказать ему, что слева нужно записать большее число, а справа — меньшую цифру.
  3. Затем нужно определить часть делимого, которую можно использовать для первичного деления.
  4. Далее следует понять, сколько раз уменьшается в выбранной части делимого делитель. Можно обратить внимание ребенка на то, ответ не должен превышать 9.
  5. Затем делитель нужно умножить на полученное число под «уголком». Результат вписывается под выбранную часть делимого.
  6. Далее необходимо найти разницу (остаток).
  7. Действия повторяются до тех пор, пока не удастся получить в остатке цифру 0.

Как быстро научить ребенка делению? Начинать процесс обучения необходимо с простейших задач. К примеру, малышу нужно разделить апельсин на дольки между членами семьи. Он начнет с того, что будет перекладывать по одной штучке. Уже после этого можно предложить ему подсчитать изначальное количество долек, а затем количество, которое должно достаться каждому.

Результат обучения зависит не только от умения родителей выбирать простые примеры. Также важно запастись терпением, так как путь предстоит долгий. Если ребенок не понимает какой-то момент, обязательно следует возвращаться к нему и повторять еще раз. Ни в коем случае нельзя ругать малыша, если у него что-то не получается. Если он допускает ошибку, необходимо спокойно поправить его.

Нужна ли таблица

Как сделать, чтобы малыш быстро освоил деление? Как научить ребенка решать примеры? Чтобы успешно справиться с этой задачей, необходимо знать таблицу умножения. Однако сейчас появились и таблицы деления, которыми пользуются некоторые учителя в процессе обучения.

Нужна ли таблица деления? Или достаточно, чтобы ребенок понял, что деление — это умножение наоборот? Второй вариант предпочтительнее, так как побуждает малыша думать. Однако вовсе не обязательно отказываться и от таблицы деления, когда ребенок уже проникнет в тайны этого процесса.

Один из важных этапов в обучении ребёнка математическим действиям – обучение операции деления простых чисел. Как объяснить ребёнку деление, когда можно приступать к освоению этой темы?

Для того чтобы научить ребёнка делению, необходимо, чтобы он к моменту обучения уже освоил такие математические операции, как сложение, вычитание, а также имел чёткое представление о самой сущности действий умножения и деления. То есть, он должен понимать, что деление – это разделение чего-либо на равные части. Также необходимо научить операции умножения и выучить таблицу умножения.

Я уже писала о том, Эта статья может стать для вас полезной.

Осваиваем операцию разделения (деления) на части в игровой форме

На этом этапе необходимо сформировать у ребёнка понимание того, что деление – это разделение чего-либо на равные части. Самый просто способ научить ребёнка этому – предложить ему разделить некоторое количество предметов между ним его друзьями или членами семьи.

Допустим, возьмите 8 одинаковых кубиков и предложите ребёнку разделить на две равные части – для него и другого человека. Варьируйте и усложняйте задание, предложите ребёнку разделить 8 кубиков не на двоих, а на четырёх человек. Проанализируйте вместе с ним результат. Меняйте составляющие, пробуйте с другим количеством предметов и людей, на которые нужно разделить эти предметы.

Важно: Следите, чтобы вначале ребёнок оперировал с чётным количеством предметов, для того, чтобы результатом деления было одинаковое количество частей. Это окажется полезным на следующем этапе, когда ребёнку будет нужно понять, что деление – это операция обратная умножению.

Умножаем и делим, используя таблицу умножения

Объясните ребёнку, что, в математике, действие, противоположное умножению, называется «деление». Оперируя таблицей умножения, продемонстрируйте ученику на любом примере взаимосвязь между умножением и делением.

Пример: 4х2=8. Напомните ребёнку, что результатом умножения является произведение двух чисел. После этого объясните, что операция деления, является обратной операции умножения и проиллюстрируйте это наглядно.

Разделите получившееся произведение «8» из примера – на любой из множителей – «2» или «4», и результатом всегда будет другой, не использовавшийся в операции множитель.

Также нужно научить юного ученика, тому, как называются категории, описывающие операцию деления – «делимое», «делитель» и «частное». На примере покажите, какие цифры являются делимым, делителем и частным. Закрепите эти знания, они необходимы для дальнейшего обучения!

По сути, вам нужно научить ребёнка таблице умножения «наоборот», и запомнить её необходимо так же хорошо, как и саму таблицу умножения, ведь это будет необходимым, когда вы начнёте обучение делению в столбик.

Делим столбиком – приведем пример

Перед началом занятия вспомните вместе с ребёнком, как называются цифры в процессе операции деления. Что является «делителем», «делимым», «частным»? Научите безошибочно и быстро определять эти категории. Это будет очень полезным во время обучения ребёнка делению простых чисел.

Объясняем наглядно

Давайте разделим 938 на 7. В данном примере 938 – это делимое, 7 – делитель. Результатом будет частное, его то и нужно вычислить.

Шаг 1 . Записываем числа, разделив их «уголком».

Шаг 2. Покажите ученику числа делимого и предложите ему, выбрать из них то наименьшее число, которое окажется больше делителя. Из трёх цифр 9, 3 и 8, этим числом будет 9. Предложите ребёнку проанализировать, сколько раз число 7 может содержаться в числе 9? Правильно, только один раз. Поэтому первым записанными нами результатом будет 1.

Шаг 3. Переходим к оформлению деления столбиком:

Умножаем делитель 7х1 и получаем 7. Полученный результат записываем под первым числом нашего делимого 938 и вычитаем, как обычно, в столбик. То есть из 9 мы вычитаем 7 и получаем 2.

Записываем результат.

Шаг 4. Число, которое мы видим, меньше делителя, поэтому необходимо его надо увеличить. Для этого объединим его со следующим неиспользованным числом нашего делимого – это будет 3. Приписываем 3 к полученному числу 2.

Шаг 5. Далее действуем по уже известному алгоритму. Анализируем, сколько раз наш делитель 7 содержится в полученном числе 23? Правильно, три раза. Фиксируем число 3 в частном. А результат произведения – 21 (7*3) записываем внизу под числом 23 в столбик.

Шаг.6 Теперь осталось найти последнее число нашего частного. Используя уже знакомый алгоритм, продолжаем делать вычисления в столбике. Путём вычитания в столбике (23-21) получаем разницу. Она равняется 2.

Из делимого у нас осталась неиспользованным одно число – 8. Объединяем его с полученным в результате вычитания числом 2, получаем – 28.

Шаг.7 Анализируем, сколько раз наш делитель 7 содержится в полученном числе? Правильно, 4 раза. Записываем полученную цифру в результат. Итак, мы полученное в результате деления столбиком частное= 134.

Как научить ребенка делению – закрепляем навык

Главное из-за чего у многих школьников возникает проблема с математикой — это неумение быстро делать простые арифметические расчеты. А на этой основе построена вся математика в начальной школе. Особенно часто проблема именно в умножении и делении.
Чтобы ребенок научился быстро и качественно проводить расчеты деления в уме — необходима правильная методика обучения и закрепление навыка. Для этого мы советуем воспользоваться популярными на сегодня пособиями в усвоение навыка деления. Одни предназначены для занятий детей с родителями, другие для самостоятельной работы.

  1. «Деление. Уровень 3. Рабочая тетрадь» от крупнейшего международного центра дополнительного образования Kumon
  2. «Деление. Уровень 4. Рабочая тетрадь» от Kumon
  3. «Не Ментальная арифметика. Система обучения ребенка быстрому умножению и делению. За 21 день. Блокнот-тренажёр.» от Ш. Ахмадулина — автора обучающих книг-бестселлеров

Самым главным, когда вы учите ребёнка делению в столбик, является усвоение алгоритма, который, в общем-то, достаточно прост.

Если ребёнок хорошо оперирует таблицей умножения и «обратным» делением, у него не возникнет трудностей. Тем не менее очень важно постоянно тренировать полученный навык. Не останавливайтесь на достигнутом, как только вы поймёте, что ребёнок уловил суть метода.

Для того чтобы легко научить ребёнка операции деления нужно:

  • Чтобы в возрасте двух–трех лет он освоил отношения «целое – часть». У него должно сложиться понимание целого, как неразделимой категории и восприятие отдельной части целого как самостоятельного объекта. Например – игрушечный грузовик – целое, а его кузов, колеса, дверцы – части этого целого.
  • Чтобы в младшем школьном возрасте ребенок свободно оперировал действиями по сложению и вычитанию чисел, понимал суть процессов умножения и деления.

Для того чтобы занятия математикой доставляли ребёнку удовольствие, необходимо возбуждать его интерес к математике и математическим действиям, не только во время обучения, но и в бытовых ситуациях.

Поэтому поощряйте и развивайте наблюдательность у ребёнка, проводите аналогии с математическими действиями (операции на счёт и деление, анализ отношений «часть-целое» и т.д.) во время конструирования, игр и наблюдений за природой.

Преподаватель, специалист детского развивающего центра
Дружинина Елена
специально для проекта сайт

Видео сюжет для родителей, как правильно объяснить ребенку деление в столбик:

Деление столбиком неотъемлемая часть школьной программы и необходимое знание для ребенка. Чтобы избежать проблем на уроках и с их выполнением, следует давать ребенку основные знания еще с маленького возраста.

Гораздо легче объяснять ребенку определенные вещи и процессы в игровой форме, а не в формате стандартного урока (хотя на сегодняшний день существует достаточно разнообразных методик обучения в разных формах).

Из этой статьи вы узнаете

Принцип деления для малышей

Дети постоянно сталкиваются с разными математическими терминами, даже не подозревая, откуда они. Ведь многие мамочки, в форме игры, объясняют ребенку, что папы больше тарелка, в садик ходить дальше, чем в магазин и другие незамысловатые примеры. Всё это представляет ребенку первоначальное впечатление о математике, еще до похода ребёнка в первый класс.

Чтобы научить ребёнка делить без остатка, а позже с остатком, необходимо прямо предложить поиграть малышу в игры с делением. Разделите, например, конфеты между собой, а затем по очереди добавляйте следующих участников.

Сначала ребенок будет делить конфеты, отдавая каждому участнику по одной. А в конце вместе сделаете вывод. Следует пояснить, что «разделить» — значит всем одинаковое число конфет.

Если Вам необходимо растолковать этот процесс с помощью цифр, то можно привести пример в форме игры. Можно сказать, что цифра – это конфета. Следует объяснить, что число конфет, которые нужно делить между участниками – делимое. А количество человек, на которых делят эти конфеты – это делитель.

Потом следует показать это все наглядно, привести «живые» примеры, чтобы быстрее научить кроху делить. Играя, он намного быстрее все поймет и усвоит. Пока алгоритм объяснить будет сложно, и сейчас это не нужно.

Как обучить малыша делению в столбик

Объяснение крохе разных математических действий – это хорошая подготовка к походу в класс, особенно математический класс. Если Вы решили перейти к обучению ребенка делению столбиком, значит такие действия как сложение, вычитание, и что такое таблица умножения он уже усвоил.

Если же это у него все еще вызывает некоторые сложности, то нужно подтянуть все эти знания. Стоит напомнить алгоритм действий предыдущих процессов, научить свободно пользоваться своими знаниями. В противном случае малыш просто запутается во всех процессах, и перестанет что-либо понимать.

Для облегчения понимания этого, сейчас есть таблица деления для малышей. Принцип у нее такой же, как и у таблиц умножения. Но нужна ли уже такая таблица, если малыш знает таблицу умножения? Это зависит от школы и учителя.

При формировании понятия «деление» нужно обязательно делать все в игровой форме, приводить все примеры на знакомых ребенку вещах и предметах.

Очень важно, чтобы все предметы были четного числа, чтобы малышу было ясно, что итогом являются равные части. Это будет правильно, поскольку позволит крохе осознать, что деление — процесс обратный умножению. Если предметы будут нечетного количества, то итог выйдет с остатком и малыш запутается.

Умножаем и делим с помощью таблицы

При объяснении малышу взаимосвязи между умножением и делением, необходимо это все наглядно показывать на каком-либо примере. Например: 5 х 3 = 15. Вспомните, что итог умножения это произведение двух чисел.

И только после этого, объясняйте, что это обратный процесс к умножению и продемонстрируйте это наглядно с помощью таблицы.

Скажите, что нужно поделить результат «15» — на какой-то из множителей («5»/ «3»), и итогом будет постоянно иной, не принимавший участие в делении, множитель.

Также необходимо растолковать малышу, как правильно называются категории, которые выполняют деление: делимое, делитель, частное. И снова с помощью примера покажите, что из них является конкретной категорией.

Деление столбиком вещь не очень сложная, у нее есть свой легкий алгоритм, которому малыша нужно научить. После закрепления всех этих понятий и знаний, можно переходить к дальнейшему обучению.

В принципе, родителям стоит выучить с любимым чадом таблицу умножения в обратном порядке, и наизусть ее запомнить, так как это будет нужным при обучении делению столбиком.

Это делать необходимо до похода в первый класс, чтобы ребенку в школе было намного легче освоиться, и успевать за школьной программой, и чтобы класс из-за небольших неудач не начал дразнить ребенка. Таблица умножения есть и в школе, и в тетрадях, поэтому носить отдельную таблицу в школу не придется.

Делим с помощью столбика

Прежде чем приступить к занятию, нужно вспомнить названия цифр при делении. Что такое делитель, делимое и частное. Ребенок должен без ошибок делить эти цифры на правильные категории.

Самое главное при обучении деления столбиком, это усвоить алгоритм, который, в общем, довольно простой. Но сначала объясните ребенку значение слова «алгоритм», если он забыл его или до этого не изучал.

В том случае, если кроха прекрасно разбирается в таблице умножения и обратного деления, у него не будет никаких сложностей.

Однако на полученном результате долго задерживаться нельзя, необходимо регулярно тренировать приобретенные умения и навыки. Двигайтесь далее, как только станет ясно, что малыш понял принцип метода.

Необходимо научить малыша делить столбиком без остатка и с остатком, чтобы ребенок не пугался, что у него что-то не получилось разделить правильно.

Чтобы было проще обучить малыша процессу деления необходимо:

  • в 2-3 года понимание отношения целое-часть.
  • в 6-7 лет малыш должен свободно уметь выполнять сложение, вычитание и осознавать сущность умножения и деления.

Нужно побуждать интерес малыша к математическим процессам, чтобы этот урок в школе приносил ему удовольствие и желание учиться, и не мотивировать его на одних на уроках, но и в жизни.

Ребенок должен носить разные инструменты для уроков математики, учиться ими пользоваться. Однако если ребенку тяжело все носить, то не стоит его перегружать.

Одним из наиболее важных этапов обучения вашего ребенка математическим операциям является обучение действиям деления простых чисел. Для обучения делению ребенка, нужно, чтобы к моменту обучения он уже освоил и хорошо понимал такие математические действия, как вычитание, сложение.

Кроме того, важно иметь четкое представление о самой сущности таких действий, как деление и умножение. Таким образом, он должен понимать, что в действии с делением заключается метод разделения чего-либо на равные доли. В заключение необходимо также обучиться операциям по умножению и хорошо знать таблицу умножения.

Обучаемся операции по делению на части

На данном этапе лучше сформировать понимание того, что главное в процессе деления, это разделение чего-то на равные части. Самым простым способом научиться этому для ребенка, это будет предложить ему поделить несколько предметов между ним и членами семьи или друзьями.

К примеру, возьмите 6 одинаковых предметов и предложите ребенку поделить их на две равные части. Можно немного усложнить задание, предложив поделить не на две, а на три равные части.

Важным моментом здесь считается проводить операции по делению четных количеств предметов. Такое действие окажется полезным на дальнейшем этапе, когда ребенку будет необходимо понимание того, что разделение, это действие, обратное умножению.

Делим и умножаем, при помощи таблицы умножения

Здесь стоит объяснить ребенку, про обратное умножению действие, называется «делением». Опираясь на таблицу умножения, покажите обучаемому эту взаимосвязь между делением и умножением на какой-нибудь примере.

Например : 2 умножить на 4 будет восемь. Здесь акцентируйте внимание на то, что итогом умножения будет произведение двух чисел. Затем будет лучше проиллюстрировать операцию деления, указывая на действие обратной операции умножения.

Поделите получившийся ответ «8» на любой множитель – «4» или «2», в результате всегда будет тот множитель, который не использовался в операции.

Также стоит научить распознавать категории, описывающие операции деления, такие как, «делитель», «делимое», «частное». Важно закрепить данные знания, они наиболее необходимы для дальнейшего процесса обучения!

Разделяем столбиком – легко и быстро

Перед тем, как начинать обучение следует вспомнить с ребенком, какое название имеет каждое число в процессе операции разделения. Главное, научиться быстро и безошибочно научиться определять данные категории.

Наглядный пример:

Попробуем разделить 938 на 7. В этом приведенном примере число 938 будет являться делимым, а число 7 будет делителем. В результате действия, ответ будет называться частное.

  1. Необходимо записать числа, разделив их «уголком».
  2. Предложите ученику из наименьшего числа делимого выбрать то, что больше делителя. Из цифр 9, 3, 8, наибольшим будет цифра 9. Предложите проанализировать, сколько семерок может содержать в цифре 9. Одним правильным ответом здесь будет только один. Первым результатом записываем 1.
  3. Оформляем деление в столбик.

Умножим делитель 7 на 1, ответ будет 7. Полученный результат вписываем под первое число нашего делимого, затем вычитаем в столбик. Таким образом, из 9 отнимаем 7 и в ответе получаем 2. Это тоже записываем.

  1. Видим число, получившееся меньше делителя, поэтому увеличиваем его. Чтобы это сделать, объединим его вместе с неиспользованным числом делимого, то есть с цифрой 3. Дописываем 3 к полученной 2.
  2. Затем анализируем сколько раз делитель 7 будет содержаться в числе 23. Ответ 3 раза и фиксируем его в частном. Результат произведения 7 на 3 (21) вписываем снизу в столбик под число 23.
  3. Остается только найти последнее число частного. Применяя тот же алгоритм, продолжает вычисления в столбике. Вычитает в столбике 23-21 получает разницу, равной числу 2. Из всего делимого, у нас остается только неиспользованное число 8. Его объединяем с полученным результатом 2, получаем в ответе 28.
  4. В заключение анализируем, какое количество, раз делитель 7 содержится в полученном нами числе. Правильный ответ 4 раза. Ее мы вписываем в результат. В итоге наш ответ, полученный при процессе деления равен 134.

Самым наиболее главным при обучении ребенка методу деления, будет усвоение и четкое понимание алгоритма действий, ведь на самом деле он предельно прост.


Если ваш ребенок отлично умеет оперировать таблицей умножения, то с «обратным» делением у него не должны возникнуть трудности. Поэтому очень важно все время тренировать полученные навыки. Не стоит останавливаться на достигнутом.

Для легкого обучения юного ученика методу деления следует:

  • в возрасте трех лет правильно усвоить термины «целое» и «часть». Должно сформироваться понимание понятия целого, в качестве неразделимой категории, а также восприятие отдельных частей целого в понятии самостоятельного объекта.
  • правильно понимать и разбираться в методах деления и умножения.

Чтобы занятия доставили ребенку удовольствие, следует возбуждать интерес к математике в ситуациях в быту, а не только в процессе учебы.

Поэтому тренируйте наблюдательность у ребенка, придумывайте аналогии математических действий во время игр, в процессе конструирования либо же в простых наблюдениях за природой.

Поскольку операция деления простых чисел является одним из важных математических действий, многие родители задумываются о том, как научить ребенка делению. Перед тем, как приступить к обучению, вы должны убедиться в том, что малыш уже умеет вычитать, складывать и умножать числа. Лучше всего приступать к изучению деления столбиком, когда ребенок отправляется в третий класс. Очень важно объяснить, что деление представляет собой процесс, по ходу которого целое разбивают на отдельные части. Не забудьте учесть знания таблицы умножения – убедитесь в том, что кроха уверенно знает ее.

Перед тем, как серьезно приступить к обучению, попробуйте освоить эту нехитрую науку в игровой форме. Для того чтобы сформировать у малыша представление о том, что деление – это разбор целого на части, дайте ему несколько предметов и попросите разделить между членами семьи или игрушками. При этом эффективно использовать нечто целое – фрукт или овощ, например, который можно разрезать на кусочки.

Потренируйтесь на кубиках. Возьмите парное количество этих элементов и предложите ребенку разделить их поровну между собой и вами. Варьируйте задание. Добавьте такое количество кубиков, чтобы их общее количество делилось на три или шесть. Затем можно усложнить задачу и делить на восемь, семь или девять. После выполнения каждого задания тщательно анализируйте результат вместе с малышом. Он должен понимать сам процесс. Если что-то ему непонятно, постарайтесь доходчиво это объяснить. Не зацикливайтесь на определенных предметах. Постоянно меняйте их, чтобы ребенок приспосабливался делить любые объекты.

Вместе с этим ищут и читают:

Теперь вам необходимо решить, как научить ребенка делить. Если он уже перешел в третий класс, трудностей у вас возникнуть не должно. Для начала объясните малышу зависимость между делением и умножением. Продемонстрируйте ему, как правильно делить столбиком, используя таблицу умножения. Рассмотрим следующий пример: 3*4=12. Расскажите ребенку, что три и четыре – это множители, а двенадцать – произведение. Проиллюстрируйте ему это на наглядном примере. Покажите ему, что если двенадцать разделить столбиком на три, получится четыре.

Объясните ученику, который перешел в третий класс, что категории, описывающие деление, называются «делимое», «делитель», «частное». Продемонстрируйте это наглядно с помощью таблицы. Рассмотрите как можно больше примеров, чтобы малышу было понятнее. Это пригодится в дальнейшем, когда вы будете осваивать деление столбиком. По сути, вам необходимо научить кроху смотреть на таблицу умножения «наоборот».

Перед началом занятий еще раз вспомните категории деления. Теперь попробуем объяснить все наглядно. Например, разделим число девятьсот тридцать восемь на семь. Запишем числа, чтобы делить их столбиком. Если вы только начинаете обучение, то ребенку, который пошел в третий класс, будет проще для начала делить числа без остатка. Теперь показываем ученику числа делимого и предлагаем ему выбрать наименьшее число, которое будет больше, чем делитель. Выбираем число девять. Теперь предложите малышу ответить, сколько чисел семь может содержаться в числе девять? Правильный ответ – одно. Поэтому записываем единичку.

Умножаем семь на один, получаем семь. Этот результат мы записываем под девяткой из числа девятьсот тридцать восемь. Вычитаем от девятки семерку в столбик. В остатке получаем два. Аналогичным образом записываем результат. Полученное число меньше, чем делитель. Таким образом, нам необходимо его увеличить. Объединяем его со следующим неиспользованным числом – тройкой. «Плюсуем» тройку и двойку. Продолжаем процесс деления согласно с алгоритмом. В итоге мы получаем число – сто тридцать четыре.

Самое главное в процессе обучения малыша, который перешел в третий класс, чтобы он усвоил простой алгоритм. Развивайте наблюдательность у крохи, проводите аналогии с другими математическими действиями, больше играйте и наблюдайте за природой.

Как делить в столбик? Как объяснить ребенку деление столбиком? Деление на однозначное, двузначное, трехзначное число, деление с остатком

Научить ребенка делению столбиком просто. Необходимо объяснить алгоритм этого действия и закрепить пройденный материал.

  • Согласно школьной программе, деление столбиком детям начинают объяснять уже в третьем классе. Ученики, которые схватывают все «на лету», быстро понимают эту тему
  • Но, если ребенок заболел и пропустил уроки математики, или он не понял тему, тогда родители должны самостоятельно малышу объяснить материал. Нужно максимально доступно донести до него информацию
  • Мамы и папы во время учебного процесса ребенка должны быть терпеливыми, проявляя такт по отношению к своему чаду. Ни в коем случае нельзя кричать на ребенка, если у него что-то не получается, ведь так можно отбить у него всю охоту к занятиям

Как объяснить ребенку деление столбиком?

Как объяснить ребенку деление столбиком?

Важно: Чтобы ребенок понял деление чисел, он должен досконально знать таблицу умножения. Если малыш плохо знает умножение, он не поймет деление.

Во время домашних дополнительных занятий можно пользоваться шпаргалками, но ребенок должен выучить таблицу умножения, прежде чем, приступать к теме «Деление».

Итак, как объяснить ребенку деление столбиком:

  • Постарайтесь сначала объяснить на маленьких цифрах. Возьмите счетные палочки, например, 8 штук
  • Спросите у ребенка, сколько пар в этом ряду палочек? Правильно — 4. Значит, если разделить 8 на 2, получится 4, а при делении 8 на 4 получится 2
  • Пусть ребенок сам разделит другое число, например, более сложное: 24:4
  • Когда малыш освоил деление простых чисел, тогда можно переходить к делению трехзначных чисел на однозначные

Деление на однозначное число

Деление на однозначное число

Деление всегда дается детям немного сложнее, чем умножение. Но усердные дополнительные занятия дома помогут малышу понять алгоритм этого действия и не отставать от сверстников в школе.

Начинайте с простого — деление на однозначное число:

Важно: Просчитайте в уме, чтобы деление получилось без остатка, иначе ребенок может запутаться.

Например, 256 разделить на 4:

  • Начертите на листе бумаги вертикальную линию и разделите ее с правой части пополам. Слева напишите первую цифру, а справа над чертой вторую
  • Спросите у малыша, сколько четверок помещается в двойке — нисколько
  • Тогда берем 25. Для наглядности отделите это число сверху уголком. Опять спросите у ребенка, сколько помещается четверок в двадцати пяти? Правильно — шесть. Пишем цифру «6» в правом нижнем углу под линией. Ребенок должен использовать таблицу умножения для правильного ответа
  • Запишите под 25 цифру 24, и подчеркните, чтобы записать ответ — 1
  • Опять спрашивайте: в единице сколько помещается четверок — нисколько. Тогда сносим к единице цифру «6»
  • Получилось 16 — сколько четверок помещается в этом числе? Правильно — 4. Записываем «4» рядом с «6» в ответе
  • Под 16 записываем 16, подчеркиваем и получается «0», значит мы разделили правильно и ответ получился «64»

Письменное деление на двузначное число

Деление на двузначное число

Когда ребенок освоил деление на однозначное число, можно двигаться дальше. Письменное деление на двузначное число чуть сложнее, но если малыш поймет, как производится это действие, тогда ему не составит труда решать такие примеры.

Важно: Снова начинайте объяснять с простых действий. Ребенок научится правильно подбирать цифры и ему будет легко делить сложные числа.

Выполните вместе такое простое действие: 184:23 — как нужно объяснять:

  • Разделим сначала 184 на 20, получается примерно 8. Но мы не пишем цифру 8 в ответ, так как это пробная цифра
  • Проверяем, подходит 8 или нет. Умножаем 8 на 23, получается 184 — это именно то число, которое у нас стоит в делителе. Ответ будет 8

Важно: Чтобы ребенок понял, попробуйте вместо восьмерки взять 9, пусть он умножит 9 на 23, получается 207 — это больше, чем у нас в делителе. Цифра 9 нам не подходит.

Так постепенно малыш поймет деление, и ему будет легко делить более сложные числа:

  • Разделим 768 на 24. Определите первую цифру частного — делим 76 не на 24, а на 20, получается 3. Записываем 3 в ответ под чертой справа
  • Под 76 записываем 72 и проводим линию, записываем разность — получилось 4. Эта цифра делится на 24? Нет — сносим 8, получается 48
  • Цифра 48 делится на 24? Правильно — да. Получается 2, записываем эту цифру в ответ
  • Получилось 32. Теперь можно проверить — правильно ли мы выполнили действие деления. Сделайте умножение в столбик: 24х32, получается 768, значит все правильно

Деление на трехзначное число

Деление на трехзначное число

Если ребенок научился выполнять деление на двузначное число, тогда необходимо перейти к следующей теме. Алгоритм деления на трехзначное число такой же, как и алгоритм деления на двузначное число.

Например:

  • Разделим 146064 на 716. Берем сначала 146 — спросите у ребенка делится это число на 716 или нет. Правильно — нет, тогда берем 1460
  • Сколько раз число 716 поместится в числе 1460? Правильно — 2, значит пишем эту цифру в ответе
  • Умножаем 2 на 716, получается 1432. Записываем эту цифру под 1460. Получается разность 28, записываем под чертой
  • Сносим 6. Спросите у ребенка — 286 делится на 716? Правильно — нет, поэтому пишем 0 в ответе рядом с 2. Сносим еще цифру 4
  • Делим 2864 на 716. Берем по 3 — мало, по 5 — много, значит получается 4. Умножаем 4 на 716, получается 2864
  • Запишите 2864 под 2864, получается в разности 0. Ответ 204

Важно: Для проверки правильности выполнения деления, умножьте вместе с ребенком в столбик — 204х716=146064. Деление выполнено правильно.

Деление с остатком

Деление с остатком

Пришло время ребенку объяснить, что деление может быть не только нацело, но и с остатком. Остаток всегда меньше делителя или равен ему.

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375

Алгоритм деления чисел

Алгоритм деления чисел

Совет: Если ребенок что-то не понял — не злитесь. Пусть пройдет пару дней и снова постарайтесь объяснить материал.

Уроки математики в школе также будут закреплять знания. Пройдет время и малыш будет быстро и легко решать любые примеры на деление.

Алгоритм деления чисел заключается в следующем:

  • Сделать прикидку числа, которое будет стоять в ответе
  • Найти первое неполное делимое
  • Определить число цифр в частном
  • Найти цифры в каждом разряде частного
  • Найти остаток (если он есть)

По такому алгоритму выполняется деление как на однозначные числа, так и на любое многозначное число (двузначное, трехзначное, четырехзначное и так далее).

Игры на деление

Игры на деление

Занимаясь с ребенком, чаще ему задавайте примеры на выполнение прикидки. Он должен быстро в уме подсчитать ответ. Например:

  • 1428:42
  • 2924:68
  • 30296:56
  • 136576:64
  • 16514:718

Для закрепления результата можно использовать такие игры на деление:

  • «Головоломка». Напишите на листе бумаги пять примеров. Только один из них должен быть с правильным ответом.

Условие для ребенка: Среди нескольких примеров, только один решен правильно. Найди его за минуту.

Видео: Игра арифметика для детей сложение вычитание деление умножение

Видео: Развивающий мультфильм Математика Изучение наизусть таблицы умножения и деления на 2

Видео: Деление двузначного числа на однозначное

Когда ребенок дополнительно занимается дома, он закрепляет пройденный материал в школе. Благодаря этому ему легче учиться и он не будет отставать от сверстников. Поэтому помогайте своим детям, занимайтесь дома с ними вместе. и у малыша все получится!

Видео: Деление в столбик часть 1

Видео: Деление в столбик часть 2

Видео: Деление в столбик часть 3

Видео: Деление в столбик часть 4

Видео: Деление в столбик часть 5

Как решать примеры столбиком на деление. Как научиться делить столбиком: примеры и решения

Математический-Калькулятор-Онлайн v.1.0

Калькулятор выполняет следующие операции: сложение, вычитание, умножение, деление, работа с десятичными, извлечение корня, возведение в степень, вычисление процентов и др. операции.

Решение:

Как работать с математическим калькулятором

Клавиша Обозначение Пояснение
5 цифры 0-9 Арабские цифры. Ввод натуральных целых чисел, нуля. Для получения отрицательного целого числа необходимо нажать клавишу +/-
. точка (запятая) Разделитель для обозначения десятичной дроби. При отсутствии цифры перед точкой (запятой) калькулятор автоматически подставит ноль перед точкой. Например: .5 — будет записано 0.5
+ знак плюс Сложение чисел (целые, десятичные дроби)
знак минус Вычитание чисел (целые, десятичные дроби)
÷ знак деления Деление чисел (целые, десятичные дроби)
х знак умножения Умножение чисел (целые, десятичные дроби)
корень Извлечение корня из числа. При повторном нажатие на кнопку «корня» производится вычисление корня из результата. Например: корень из 16 = 4; корень из 4 = 2
x 2 возведение в квадрат Возведение числа в квадрат. При повторном нажатие на кнопку «возведение в квадрат» производится возведение в квадрат результата Например: квадрат 2 = 4; квадрат 4 = 16
1 / x дробь Вывод в десятичные дроби. В числителе 1, в знаменателе вводимое число
% процент Получение процента от числа. Для работы необходимо ввести: число из которого будет высчитываться процент, знак (плюс, минус, делить, умножить), сколько процентов в численном виде, кнопка «%»
( открытая скобка Открытая скобка для задания приоритета вычисления. Обязательно наличие закрытой скобки. Пример: (2+3)*2=10
) закрытая скобка Закрытая скобка для задания приоритета вычисления. Обязательно наличие открытой скобки
± плюс минус Меняет знак на противоположный
= равно Выводит результат решения. Также над калькулятором в поле «Решение» выводится промежуточные вычисления и результат.
удаление символа Удаляет последний символ
С сброс Кнопка сброса. Полностью сбрасывает калькулятор в положение «0»

Алгоритм работы онлайн-калькулятора на примерах

Сложение.

Сложение целых натуральных чисел { 5 + 7 = 12 }

Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }

Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }

Вычитание.

Вычитание целых натуральных чисел { 7 — 5 = 2 }

Вычитание целых натуральных и отрицательных чисел { 5 — (-2) = 7 }

Вычитание десятичных дробных чисел { 6,5 — 1,2 = 4,3 }

Умножение.

Произведение целых натуральных чисел { 3 * 7 = 21 }

Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }

Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }

Деление.

Деление целых натуральных чисел { 27 / 3 = 9 }

Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }

Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }

Извлечение корня из числа.

Извлечение корня из целого числа { корень(9) = 3 }

Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }

Извлечение корня из суммы чисел { корень(56 + 25) = 9 }

Извлечение корня из разницы чисел { корень (32 – 7) = 5 }

Возведение числа в квадрат.

Возведение в квадрат целого числа { (3) 2 = 9 }

Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }

Перевод в десятичные дроби.

Вычисление процентов от числа

Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }

Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }

18% от числа 140 это { 140 * 0,18 = 25,2 }

Деление столбиком неотъемлемая часть школьной программы и необходимое знание для ребенка. Чтобы избежать проблем на уроках и с их выполнением, следует давать ребенку основные знания еще с маленького возраста.

Гораздо легче объяснять ребенку определенные вещи и процессы в игровой форме, а не в формате стандартного урока (хотя на сегодняшний день существует достаточно разнообразных методик обучения в разных формах).

Из этой статьи вы узнаете

Принцип деления для малышей

Дети постоянно сталкиваются с разными математическими терминами, даже не подозревая, откуда они. Ведь многие мамочки, в форме игры, объясняют ребенку, что папы больше тарелка, в садик ходить дальше, чем в магазин и другие незамысловатые примеры. Всё это представляет ребенку первоначальное впечатление о математике, еще до похода ребёнка в первый класс.

Чтобы научить ребёнка делить без остатка, а позже с остатком, необходимо прямо предложить поиграть малышу в игры с делением. Разделите, например, конфеты между собой, а затем по очереди добавляйте следующих участников.

Сначала ребенок будет делить конфеты, отдавая каждому участнику по одной. А в конце вместе сделаете вывод. Следует пояснить, что «разделить» — значит всем одинаковое число конфет.

Если Вам необходимо растолковать этот процесс с помощью цифр, то можно привести пример в форме игры. Можно сказать, что цифра – это конфета. Следует объяснить, что число конфет, которые нужно делить между участниками – делимое. А количество человек, на которых делят эти конфеты – это делитель.

Потом следует показать это все наглядно, привести «живые» примеры, чтобы быстрее научить кроху делить. Играя, он намного быстрее все поймет и усвоит. Пока алгоритм объяснить будет сложно, и сейчас это не нужно.

Как обучить малыша делению в столбик

Объяснение крохе разных математических действий – это хорошая подготовка к походу в класс, особенно математический класс. Если Вы решили перейти к обучению ребенка делению столбиком, значит такие действия как сложение, вычитание, и что такое таблица умножения он уже усвоил.

Если же это у него все еще вызывает некоторые сложности, то нужно подтянуть все эти знания. Стоит напомнить алгоритм действий предыдущих процессов, научить свободно пользоваться своими знаниями. В противном случае малыш просто запутается во всех процессах, и перестанет что-либо понимать.

Для облегчения понимания этого, сейчас есть таблица деления для малышей. Принцип у нее такой же, как и у таблиц умножения. Но нужна ли уже такая таблица, если малыш знает таблицу умножения? Это зависит от школы и учителя.

При формировании понятия «деление» нужно обязательно делать все в игровой форме, приводить все примеры на знакомых ребенку вещах и предметах.

Очень важно, чтобы все предметы были четного числа, чтобы малышу было ясно, что итогом являются равные части. Это будет правильно, поскольку позволит крохе осознать, что деление — процесс обратный умножению. Если предметы будут нечетного количества, то итог выйдет с остатком и малыш запутается.

Умножаем и делим с помощью таблицы

При объяснении малышу взаимосвязи между умножением и делением, необходимо это все наглядно показывать на каком-либо примере. Например: 5 х 3 = 15. Вспомните, что итог умножения это произведение двух чисел.

И только после этого, объясняйте, что это обратный процесс к умножению и продемонстрируйте это наглядно с помощью таблицы.

Скажите, что нужно поделить результат «15» — на какой-то из множителей («5»/ «3»), и итогом будет постоянно иной, не принимавший участие в делении, множитель.

Также необходимо растолковать малышу, как правильно называются категории, которые выполняют деление: делимое, делитель, частное. И снова с помощью примера покажите, что из них является конкретной категорией.

Деление столбиком вещь не очень сложная, у нее есть свой легкий алгоритм, которому малыша нужно научить. После закрепления всех этих понятий и знаний, можно переходить к дальнейшему обучению.

В принципе, родителям стоит выучить с любимым чадом таблицу умножения в обратном порядке, и наизусть ее запомнить, так как это будет нужным при обучении делению столбиком.

Это делать необходимо до похода в первый класс, чтобы ребенку в школе было намного легче освоиться, и успевать за школьной программой, и чтобы класс из-за небольших неудач не начал дразнить ребенка. Таблица умножения есть и в школе, и в тетрадях, поэтому носить отдельную таблицу в школу не придется.

Делим с помощью столбика

Прежде чем приступить к занятию, нужно вспомнить названия цифр при делении. Что такое делитель, делимое и частное. Ребенок должен без ошибок делить эти цифры на правильные категории.

Самое главное при обучении деления столбиком, это усвоить алгоритм, который, в общем, довольно простой. Но сначала объясните ребенку значение слова «алгоритм», если он забыл его или до этого не изучал.

В том случае, если кроха прекрасно разбирается в таблице умножения и обратного деления, у него не будет никаких сложностей.

Однако на полученном результате долго задерживаться нельзя, необходимо регулярно тренировать приобретенные умения и навыки. Двигайтесь далее, как только станет ясно, что малыш понял принцип метода.

Необходимо научить малыша делить столбиком без остатка и с остатком, чтобы ребенок не пугался, что у него что-то не получилось разделить правильно.

Чтобы было проще обучить малыша процессу деления необходимо:

  • в 2-3 года понимание отношения целое-часть.
  • в 6-7 лет малыш должен свободно уметь выполнять сложение, вычитание и осознавать сущность умножения и деления.

Нужно побуждать интерес малыша к математическим процессам, чтобы этот урок в школе приносил ему удовольствие и желание учиться, и не мотивировать его на одних на уроках, но и в жизни.

Ребенок должен носить разные инструменты для уроков математики, учиться ими пользоваться. Однако если ребенку тяжело все носить, то не стоит его перегружать.

Деление многозначных чисел легче всего выполнять столбиком. Деление столбиком иначе называют деление уголком .

Перед тем как начать выполнение деления столбиком, рассмотрим подробно саму форму записи деления столбиком. Сначала записываем делимое и справа от него ставим вертикальную черту:

За вертикальной чертой, напротив делимого, пишем делитель и под ним проводим горизонтальную черту:

Под горизонтальной чертой поэтапно будет записываться получающееся в результате вычислений частное:

Под делимым будут записываться промежуточные вычисления:

Полностью форма записи деления столбиком выглядит следующим образом:

Как делить столбиком

Допустим, нам нужно разделить 780 на 12, записываем действие в столбик и приступаем к делению:

Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:

это число 7, так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число 78 больше делителя, поэтому мы начинаем деление с него:

В нашем случае число 78 будет неполным делимым , неполным оно называется потому, что является всего лишь частью делимого.

Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра — 0, это значит, что частное будет состоять из 2 цифр.

Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:

Приступаем к делению. Нам нужно определить сколько раз 12 содержится в числе 78. Для этого мы последовательно умножаем делитель на натуральные числа 1, 2, 3, …, пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число 6, записываем его под делитель, а из 78 (по правилам вычитания столбиком) вычитаем 72 (12 · 6 = 72). После того, как мы вычли 72 из 78, получился остаток 6:

Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше.

К получившемуся остатку — 6, сносим следующую цифру делимого — 0. В результате, получилось неполное делимое — 60. Определяем, сколько раз 12 содержится в числе 60. Получаем число 5, записываем его в частное после цифры 6, а из 60 вычитаем 60 (12 · 5 = 60). В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит 780 разделилось на 12 нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:

Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить 9027 на 9.

Определяем неполное делимое — это число 9. Записываем в частное 1 и из 9 вычитаем 9. В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:

Сносим следующую цифру делимого — 0. Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль (0: 9 = 0) и в промежуточных вычислениях из 0 вычитаем 0. Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:

Сносим следующую цифру делимого — 2. В промежуточных вычислениях вышло так, что неполное делимое (2) меньше, чем делитель (9). В этом случае в частное записывают нуль и сносят следующую цифру делимого:

Определяем, сколько раз 9 содержится в числе 27. Получаем число 3, записываем его в частное, а из 27 вычитаем 27. В остатке получился нуль:

Так как в делимом больше не осталось цифр, значит число 9027 разделилось на 9 нацело:

Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить 3000 на 6.

Определяем неполное делимое — это число 30. Записываем в частное 5 и из 30 вычитаем 30. В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:

Сносим следующую цифру делимого — 0. Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из 0 вычитаем 0:

Сносим следующую цифру делимого — 0. Записываем в частное ещё один нуль и в промежуточных вычислениях из 0 вычитаем 0. Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток — 0. Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:

Так как в делимом больше не осталось цифр, значит 3000 разделилось на 6 нацело:

Деление столбиком с остатком

Пусть нам требуется разделить 1340 на 23.

Определяем неполное делимое — это число 134. Записываем в частное 5 и из 134 вычитаем 115. В остатке получилось 19:

Сносим следующую цифру делимого — 0. Определяем, сколько раз 23 содержится в числе 190. Получаем число 8, записываем его в частное, а из 190 вычитаем 184. Получаем остаток 6:

Так как в делимом больше не осталось цифр, деление закончилось. В результате получилось неполное частное 58 и остаток 6:

1340: 23 = 58 (остаток 6)

Осталось рассмотреть пример деления с остатком, когда делимое меньше делителя. Пусть нам требуется разделить 3 на 10. Мы видим, что 10 ни разу не содержится в числе 3, поэтому записываем в частное 0 и из 3 вычитаем 0 (10 · 0 = 0). Проводим горизонтальную черту и записываем остаток — 3:

3: 10 = 0 (остаток 3)

Калькулятор деления столбиком

Данный калькулятор поможет вам выполнить деление столбиком. Просто введите делимое и делитель и нажмите кнопку Вычислить.

В школе эти действия изучаются от простого к сложному. Поэтому непременно полагается хорошо усвоить алгоритм выполнения названных операций на простых примерах. Чтобы потом не возникло трудностей с делением десятичных дробей в столбик. Ведь это самый сложный вариант подобных заданий.

Этот предмет требует последовательного изучения. Пробелы в знаниях здесь недопустимы. Такой принцип должен усвоить каждый ученик уже в первом классе. Поэтому при пропуске нескольких уроков подряд материал придется освоить самостоятельно. Иначе позже возникнут проблемы не только с математикой, но и другими предметами, связанными с ней.

Второе обязательное условие успешного изучения математики — переходить к примерам на деление в столбик только после того, как освоены сложение, вычитание и умножение.

Ребенку будет трудно делить, если он не выучил таблицу умножения. Кстати, ее лучше учить по таблице Пифагора. Там нет ничего лишнего, да и усваивается умножение в таком случае проще.

Как умножаются в столбик натуральные числа?

Если возникает затруднение в решении примеров в столбик на деление и умножение, то начинать устранять проблему полагается с умножения. Поскольку деление является обратной операцией умножению:

  1. До того как перемножать два числа, на них нужно внимательно посмотреть. Выбрать то, в котором больше разрядов (длиннее), записать его первым. Под ним разместить второе. Причем цифры соответствующего разряда должны оказаться под тем же разрядом. То есть самая правая цифра первого числа должна быть над самой правой второго.
  2. Умножьте крайнюю правую цифру нижнего числа на каждую цифру верхнего, начиная справа. Запишите ответ под чертой так, чтобы его последняя цифра была под той на которую умножали.
  3. То же повторите с другой цифой нижнего числа. Но результат от умножения при этом нужно сместить на одну цифру влево. При этом его последняя цифра окажется под той, на которую умножали.

Продолжать такое умножение в столбик до тех пор, пока не закончатся цифры во втором множителе. Теперь их нужно сложить. Это и будет искомый ответ.

Алгоритм умножения в столбик десятичных дробей

Сначала полагается представить, что даны не десятичные дроби, а натуральные. То есть убрать из них запятые и далее действовать так, как описано в предыдущем случае.

Отличие начинается, когда записывается ответ. В этот момент необходимо сосчитать все цифры, которые стоят после запятых в обеих дробях. Именно столько их нужно отсчитать от конца ответа и там поставить запятую.

Удобно проиллюстрировать этот алгоритм на примере: 0,25 х 0,33:

С чего начать обучение делению?

До того как решать примеры на деление в столбик, полагается запомнить названия чисел, которые стоят в примере на деление. Первое из них (то, которое делится) — делимое. Второе (на него делят) — делитель. Ответ — частное.

После этого на простом бытовом примере объясним суть этой математической операции. Например, если взять 10 конфет, то поделить их поровну между мамой и папой легко. А как быть, если нужно раздать их родителям и брату?

После этого можно знакомиться с правилами деления и осваивать их на конкретных примерах. Сначала простых, а потом переходить ко все более сложным.

Алгоритм деления чисел в столбик

Вначале представим порядок действий для натуральных чисел, делящихся на однозначное число. Они будут основой и для многозначных делителей или десятичных дробей. Только тогда полагается внести небольшие изменения, но об этом позже:

  • До того как делать деление в столбик, нужно выяснить, где делимое и делитель.
  • Записать делимое. Справа от него — делитель.
  • Прочертить слева и снизу около последнего уголок.
  • Определить неполное делимое, то есть число, которое будет минимальным для деления. Обычно оно состоит из одной цифры, максимум из двух.
  • Подобрать число, которое будет первым записано в ответ. Оно должно быть таким, сколько раз делитель помещается в делимом.
  • Записать результат от умножения этого числа на делитель.
  • Написать его под неполным делимом. Выполнить вычитание.
  • Снести к остатку первую цифру после той части, которая уже разделена.
  • Снова подобрать число для ответа.
  • Повторить умножение и вычитание. Если остаток равен нулю и делимое закончилось, то пример сделан. В противном случае повторить действия: снести цифру, подобрать число, умножить, вычесть.

Как решать деление в столбик, если в делителе больше одной цифры?

Сам алгоритм полностью совпадает с тем, что был описан выше. Отличием будет количество цифр в неполном делимом. Их теперь минимум должно быть две, но если они оказываются меньше делителя, то работать полагается с первыми тремя цифрами.

Существует еще один нюанс в таком делении. Дело в том, что остаток и снесенная к нему цифра иногда не делятся на делитель. Тогда полагается приписать еще одну цифру по порядку. Но при этом в ответ необходимо поставить ноль. Если осуществляется деление трехзначных чисел в столбик, то может потребоваться снести больше двух цифр. Тогда вводится правило: нолей в ответе должно быть на один меньше, чем количество снесенных цифр.

Рассмотреть такое деление можно на примере — 12082: 863.

  • Неполным делимым в нем оказывается число 1208. В него число 863 помещается только один раз. Поэтому в ответ полагается поставить 1, а под 1208 записать 863.
  • После вычитания получается остаток 345.
  • К нему нужно снести цифру 2.
  • В числе 3452 четыре раза умещается 863.
  • Четверку необходимо записать в ответ. Причем при умножении на 4 получается именно это число.
  • Остаток после вычитания равен нулю. То есть деление закончено.

Ответом в примере будет число 14.

Как быть, если делимое заканчивается на ноль?

Или несколько нолей? В этом случае нулевой остаток получается, а в делимом еще стоят нули. Отчаиваться не стоит, все проще, чем может показаться. Достаточно просто приписать к ответу все нули, которые остались не разделенными.

Например, нужно поделить 400 на 5. Неполное делимое 40. В него 8 раз помещается пятерка. Значит, в ответ полагается записать 8. При вычитании остатка не остается. То есть деление закончено, но в делимом остался ноль. Его придется приписать к ответу. Таким образом, при делении 400 на 5 получается 80.

Что делать, если разделить нужно десятичную дробь?

Опять же, это число похоже на натуральное, если бы не запятая, отделяющая целую часть от дробной. Это наводит на мысль о том, что деление десятичных дробей в столбик подобно тому, которое было описано выше.

Единственным отличием будет пункт с запятой. Ее полагается поставить в ответ сразу, как только снесена первая цифра из дробной части. По-другому это можно сказать так: закончилось деление целой части — поставь запятую и продолжай решение дальше.

Во время решения примеров на деление в столбик с десятичными дробями нужно помнить, что в части после запятой можно приписать любое количество нолей. Иногда это нужно для того, чтобы доделить числа до конца.

Деление двух десятичных дробей

Оно может показаться сложным. Но только вначале. Ведь то, как выполнить деление в столбик дробей на натуральное число, уже понятно. Значит, нужно свести этот пример к уже привычному виду.

Сделать это легко. Нужно умножить обе дроби на 10, 100, 1 000 или 10 000, а может быть, на миллион, если этого требует задача. Множитель полагается выбирать исходя из того, сколько нолей стоит в десятичной части делителя. То есть в результате получится, что делить придется дробь на натуральное число.

Причем это будет в худшем случае. Ведь может получиться так, что делимое от этой операции станет целым числом. Тогда решение примера с делением в столбик дробей сведется к самому простому варианту: операции с натуральными числами.

В качестве примера: 28,4 делим на 3,2:

  • Сначала их необходимо умножить на 10, поскольку во втором числе после запятой стоит только одна цифра. Умножение даст 284 и 32.
  • Их полагается разделить. Причем сразу все число 284 на 32.
  • Первым подобранным числом для ответа является 8. От его умножения получается 256. Остатком будет 28.
  • Деление целой части закончилось, и в ответ полагается поставить запятую.
  • Снести к остатку 0.
  • Снова взять по 8.
  • Остаток: 24. К нему приписать еще один 0.
  • Теперь брать нужно 7.
  • Результат умножения — 224, остаток — 16.
  • Снести еще один 0. Взять по 5 и получится как раз 160. Остаток — 0.

Деление закончено. Результат примера 28,4:3,2 равен 8,875.

Что делать, если делитель равен 10, 100, 0,1, или 0,01?

Так же как и с умножением, деление в столбик здесь не понадобится. Достаточно просто переносить запятую в нужную сторону на определенное количество цифр. Причем по этому принципу можно решать примеры как с целыми числами, так и с десятичными дробями.

Итак, если нужно делить на 10, 100 или 1 000, то запятая переносится влево на такое количество цифр, сколько нулей в делителе. То есть, когда число делится на 100, запятая должна сместиться влево на две цифры. Если делимое — натуральное число, то подразумевается, что запятая стоит в его конце.

Это действие дает такой же результат, как если бы число было необходимо умножить на 0,1, 0,01 или 0,001. В этих примерах запятая тоже переносится влево на количество цифр, равное длине дробной части.

При делении на 0,1 (и т. д.) или умножении на 10 (и т. д.) запятая должна переместиться вправо на одну цифру (или две, три, в зависимости от количества нулей или длины дробной части).

Стоит отметить, что количества цифр, данных в делимом, может быть недостаточным. Тогда слева (в целой части) или справа (после запятой) можно приписать недостающие нули.

Деление периодических дробей

В этом случае не удастся получить точный ответ при делении в столбик. Как решать пример, если встретилась дробь с периодом? Здесь полагается переходить к обыкновенным дробям. А потом выполнять их деление по изученным ранее правилам.

Например разделить нужно 0,(3) на 0,6. Первая дробь — периодическая. Она преобразуется в дробь 3/9, которая после сокращения даст 1/3. Вторая дробь — конечная десятичная. Ее записать обыкновенной еще проще: 6/10, что равно 3/5. Правило деления обыкновенных дробей предписывает заменять деление умножением и делитель — обратным числом. То есть пример сводится к умножению 1/3 на 5/3. Ответом будет 5/9.

Если в примере разные дроби…

Тогда возможны несколько вариантов решения. Во-первых, обыкновенную дробь можно попытаться перевести в десятичную. Потом делить уже две десятичные по указанному выше алгоритму.

Во-вторых, каждая конечная десятичная дробь может быть записана в виде обыкновенной. Только это не всегда удобно. Чаще всего такие дроби оказываются огромными. Да и ответы получаются громоздкими. Поэтому первый подход считается более предпочтительным.

Как делить десятичные дроби на натуральные числа? Рассмотрим правило и его применение на примерах.

Чтобы разделить десятичную дробь на натуральное число, надо:

1) разделить десятичную дробь на число, не обращая внимания на запятую;

2) когда закончится деление целой части, в частном поставить запятую.

Примеры.

Разделить десятичные дроби:

Чтобы разделить десятичную дробь на натуральное число, делим, не обращая внимания на запятую. 5 на 6 не делится, поэтому в частном ставим нуль. Деление целой части окончено, в частном ставим запятую. Сносим нуль. 50 делим на 6. Берем по 8. 6∙8=48. От 50 вычитаем 48, в остатке получаем 2. Сносим 4. 24 делим на 6. Получаем 4. В остатке — нуль, значит, деление окончено: 5,04: 6 = 0,84.

2) 19,26: 18

Делим десятичную дробь на натуральное число, не обращая внимания на запятую. Делим 19 на 18. Берем по 1. Деление целой части окончено, в частном ставим запятую. Вычитаем от 19 18. В остатке — 1. Сносим 2. 12 на 18 не делится, в частном пишем нуль. Сносим 6. 126 делим на 18, получаем 7. Деление окончено: 19,26: 18 = 1,07.

Делим 86 на 25. Берем по 3. 25∙3=75. От 86 вычитаем 75. В остатке — 11. Деление целой части окончено, в частном ставим запятую. Сносим 5. Берем по 4. 25∙4=100. От 115 вычитаем 100. Остаток — 15. Сносим нуль. 150 делим на 25. Получаем 6. Деление окончено: 86,5: 25 = 3,46.

4) 0,1547: 17

Нуль на 17 не делится, в частном пишем нуль. Деление целой части окончено, в частном ставим запятую. Сносим 1. 1 на 17 не делится, в частном пишем нуль. Сносим 5. 15 на 17 не делится, в частном пишем нуль. Сносим 4. Делим 154 на 17. Берем по 9. 17∙9=153. От 154 вычитаем 153. В остатке — 1. Сносим 7. Делим 17 на 17. Получаем 1. Деление окончено: 0,1547: 17 = 0,0091.

5) Десятичная дробь может получиться и при делении двух натуральных чисел.

При делении 17 на 4 берем по 4. Деление целой части окончено, в частном ставим запятую. 4∙4=16. От 17 вычитаем 16. Остаток — 1. Сносим нуль. 10 делим на 4. Берем по 2. 4∙2=8. От 10 вычитаем 8. В остатке — 2. Сносим нуль. 20 делим на 4. Берем по 5. Деление окончено: 17: 4 = 4,25.

И еще пара примеров на деление десятичных дробей на натуральные числа:

Умножение в столбик. Умножение и деление столбиком

В третьем классе начальной школы дети начинают изучать внетабличные случаи умножения и деления. Числа в пределах тысячи – материал, на котором происходит овладение темой. Программа рекомендует операции деления и умножения трехзначных и двузначных чисел производить на примере однозначных. В ходе работы над темой учитель начинает формировать у детей такой важный навык, как умножение и деление столбиком. В четвертом классе отработка навыка продолжается, но используется числовой материал в пределах миллиона. Деление и умножение в столбик выполняется на многозначные числа.

Что является основой умножения

Главные положения, на которых строится алгоритм умножения многозначного числа на многозначное, являются теми же, что при действиях на однозначное. Правил, которыми пользуются дети, существует несколько. Они были «раскрыты» школьниками еще в третьем классе.

Первым правилом является поразрядность операций. Второе заключается в использовании таблицы умножения в каждом разряде.

Необходимо учесть, что эти основные положения усложняются при выполнении действий с многозначными числами.

Записанный ниже пример позволит понять, о чем идет речь. Допустим, необходимо 80 х 5 и 80 х 50.

В первом случае ученик рассуждает так: 8 десятков необходимо повторить 5 раз, получатся тоже десятки, и их будет 40, так как 8 х 5 = 40, 40 десятков – это 400, значит, 80 х 5 = 400. Алгоритм рассуждения прост и понятен ребенку. В случае затруднения он легко может найти результат, воспользовавшись действием сложения. Способ замены умножения сложением можно применять и для проверки правильности собственных вычислений.

Чтобы найти значение второго выражения, тоже необходимо воспользоваться табличным случаем и 8 х 5. Но какому разряду будут принадлежать полученные 40 единиц? Вопрос для большинства детей остается открытым. Прием замены умножения действием сложения в данном случае нерационален, так как сумма будет иметь 50 слагаемых, поэтому воспользоваться им для нахождения результата невозможно. Становится понятно, что знаний для решения примера недостаточно. Видимо, существуют еще какие-то правила умножения многозначных чисел. И их нужно выявить.

В результате совместных усилий педагога и детей становится ясно, что для умножения многозначного числа на многозначное необходимо умение применять сочетательный закон, при котором один из множителей заменяется произведением (80 х 50 = 80 х 5 х 10 = 400 х 10 = 4000)

Кроме того, возможен путь, когда используется распределительный закон умножения относительно сложения или вычитания. В этом случае один из множителей необходимо заменить суммой двух или более слагаемых.

Исследовательская работа детей

Ученикам предлагается достаточно большое количество примеров подобного вида. Дети каждый раз пытаются найти более простой и быстрый способ решения, но при этом от них все время требуется развернутая запись хода решения или подробные устные объяснения.

Учитель делает это, преследуя две цели. Во-первых, дети осознают, отрабатывают основные пути выполнения операции умножения на многозначное число. Во-вторых, приходит понимание того, что способ записи таких выражений в строчку очень неудобен. Наступает момент, когда сами ученики предлагают записывать умножение в столбик.

Этапы изучения умножения на многозначное число.

В методических рекомендациях изучение указанной темы происходит в несколько этапов. Они должны следовать один за другим, давая возможность школьникам понять весь смысл изучаемого действия. Перечень этапов открывает учителю общую картину процесса подачи материала детям:

  • самостоятельный поиск учениками способов нахождения значения произведения многозначных множителей;
  • для решения поставленной задачи используется сочетательное свойство, а также умножение на единицу с нулями;
  • отработка навыка умножения на круглые числа;
  • использование при вычислениях распределительного свойства умножения относительно сложения и вычитания;
  • операции с многозначными числами и умножение в столбик.

Следуя указанным этапам, учитель постоянно должен обращать внимание детей на тесные логические связи ранее изученного материала с тем, что осваивается в новой теме. Школьники не только занимаются умножением, но и учатся сопоставлять, делать выводы, принимать решения.

Задачи изучения умножения в курсе начальной школы

Учитель, преподавая математику, точно знает, что наступит момент, когда у четвероклассников возникнет вопрос о том, как решать столбиком умножение многозначных чисел. И если он вместе с учениками на протяжении трех лет обучения – во 2, 3, и 4 классах – целенаправленно и вдумчиво изучал конкретный смысл умножения и все вопросы, которые связаны с этой операцией, то трудностей в освоении рассматриваемой темы у детей возникнуть не должно.

Какие же задачи ранее были решены учениками и их преподавателем?

  1. Освоение табличных случаев умножения, то есть получение результата в один шаг. Обязательным требованием программы является доведение навыка до автоматизма.
  2. Умножение многозначного числа на однозначное. Результат получается путем многократного повторения шага, которым дети уже владеют в совершенстве.
  3. Умножение многозначного числа на многозначное осуществляется благодаря повторению шагов, обозначенных в пункте 1 и 2. Окончательный результат будет получен путем объединения промежуточных значений и соотнесения неполных произведений с разрядами.

Использование свойств умножения

Перед тем как на последующих страницах учебников начнут появятся примеры умножения столбиком, 4 класс должен очень хорошо научиться пользоваться для рационализации вычислений сочетательным и распределительным свойством.

Путем наблюдений и сопоставлений ученики приходят к выводу, что сочетательное свойство умножения для нахождения произведения многозначных чисел используется только тогда, когда один из множителей можно заменить произведением однозначных чисел. А это возможно не всегда.

Распределительное свойство умножения в этом случае выступает как универсальное. Дети замечают, что множитель всегда можно заменить суммой или разностью, поэтому свойство используется для решения любого примера на умножение многозначных чисел.

Алгоритм записи действия умножения в столбик

Запись умножения столбиком является самой компактной из всех существующих. Обучение детей этому виду оформления начинается с варианта умножения многозначного числа на двузначное.

Детям предлагается самостоятельно составить последовательность действий при выполнении умножения. Знание этого алгоритма станет залогом успешного формирования навыка. Поэтому учителю не нужно жалеть времени, а постараться приложить максимум усилий к тому, чтобы порядок выполнения действий при умножении в столбик был усвоен детьми на «отлично».

Упражнения для формирования навыка

Прежде всего нужно отметить, что примеры умножения в столбик, предлагаемые детям, от урока к уроку усложняются. После знакомства с умножением на двузначное число дети учатся выполнять действия с трехзначными, четырехзначными числами.

Для отработки навыка предлагаются примеры с готовым решением, но среди них преднамеренно размещают записи с ошибками. Задача учеников состоит в том, чтобы обнаружить неточности, объяснить причину их появления и исправить записи.

Теперь при решении задач, уравнений и всех других заданий, где надо выполнять умножение многозначных чисел, от учеников требуется оформление записи столбиком.

Развитие познавательных УУД при изучении темы «Умножение чисел в столбик»

Большое внимание на уроках, посвященных изучению указанной темы, уделяется развитию таких познавательных действий, как нахождение разных способов решения поставленной задачи, выбор наиболее рационального приема.

Использование схем для проведения рассуждений, установление причинно-следственных связей, анализ наблюдаемых объектов на основе выделенных существенных признаков – еще одна группа формируемых познавательных умений при изучении темы «Умножение в столбик».

Обучение детей способам деления многозначных чисел и оформлению записи столбиком осуществляется только после того, как дети научатся умножать.

Как умножать столбиком трехзначные числа на однозначное. Умножение и деление в столбик: примеры

Если нам по ходу решения задачи требуется перемножить натуральные числа, удобно использовать для этого готовый способ, который называется «умножение в столбик» (или «умножение столбиком»). Это очень удобно, поскольку с его помощью можно свести умножение многозначных чисел к последовательному перемножению однозначных.

Основы умножения столбиком

Для ведения вычисления в столбик нам будет нужна таблица умножения. Важно помнить ее наизусть, чтобы считать быстро и эффективно.

Также потребуется вспомнить, какой результат мы получим при умножении натурального числа на нуль. Это часто встречается в примерах. Нам потребуется свойство умножения, которое в буквенном виде записывается как a · 0 = 0 (a – любое натуральное число).

Чтобы лучше понять, как умножать столбиком, рекомендуем вам повторить аналогичный метод сложения. Один из этапов подсчетов будет представлять собой именно сложение промежуточных результатов, и знание этого метода при складывании чисел нам пригодится.

Также важно, чтобы вы умели сравнивать натуральные числа и помнили, что такое разряд.

Как всегда, начнем с того, как правильно записать исходные числа. Нам нужно взять два множителя и записать их один под другим так, чтобы все цифры, отличные от нуля, были расположены друг под другом. Проведем под ними горизонтальную линию, отделяющую ответ, и добавим знак умножения с левой стороны.

Пример 1

Например, чтобы вычислить и 71 , 550 · 45 002 и 534 000 · 4 300 , запишем такие столбики:

Далее нам нужно разобраться с процессом умножения. Для начала посмотрим, как правильно умножать многозначное натуральное число на однозначное, а потом посмотрим, как перемножать между собой многозначные числа.

Если нам для решения задачи требуется выполнить умножение двух натуральных чисел, одно из которых однозначное, а второе многозначное, то мы можем использовать способ столбика. Для этого выполняем последовательность шагов, которую будем объяснять сразу на примере. Сначала возьмем задачу, в которой многозначное число имеет в конце цифру, отличную от нуля.

Пример 2

Условие: вычислить 45 027 · 3 .

Решение

Запишем множители так, как это предполагает метод умножения столбиком. Поместим однозначный множитель под последним знаком многозначного. Мы получили такую запись:

Далее нам надо выполнить последовательное перемножение разрядов многозначного числа на указанный множитель. Если у нас получается число, которое меньше десяти, мы сразу вносим его в поле ответа под горизонтальной чертой, строго под вычисляемым разрядом. Если же результат составил 10 и больше, то указываем под нужным разрядом только значение единиц из полученного числа, а десятки запоминаем и добавляем на следующем шаге к более старшему разряду.

На конкретных числах процесс будет выглядеть так:

1. Умножаем 7 на 3 (семерку мы взяли из разряда единиц первого многозначного множителя): 7 · 3 = 21 . Мы получили число больше десяти, значит, записываем с правого края число 1 (значение единичного разряда числа 21), а двойку запоминаем. Наша запись принимает вид:

2. После этого мы перемножаем значения десятков первого множителя на второй и прибавляем к результату двойку, оставшуюся от предыдущего этапа. Если после этого получается меньше 10 , то вносим значения под соответствующий разряд, если больше – вносим значение единицы и переносим десятки дальше. В нашем примере нужно умножить 2 · 3 , это будет 6 . Добавляем оставшиеся с прошлого умножения десятки (от числа 21 , как мы помним): 6 + 2 = 8 . Восьмерка меньше десятки, значит, в следующий разряд переносить ничего не надо. Записываем 8 на нужное место и получаем:

3. Дальше действуем аналогично. Теперь нам надо умножить значения разряда сотен в первом многозначном множителе на исходный однозначный. Порядок действий тот же: если запоминали число на предыдущем этапе, плюсуем его к результату, сравниваем с десяткой и записываем в правильное место.

Здесь нужно умножить 3 на 0 . Согласно правилам умножения, результат будет равен 0 . Прибавлять ничего не будем, так как на предыдущем этапе число было меньше 10 . Получившийся нуль также меньше десятки, поэтому пишем его на место под горизонтальную черту:

4. Переходим к следующему разряду – умножаем тысячи. Продолжаем подсчеты по алгоритму до тех пора, пока не кончатся цифры в многозначном множителе.

Осталось умножить 5 · 3 и получить 15 . Результат больше 10 , пишем пятерку и запоминаем десяток:

Нам осталось только перемножить 4 · 3 , это будет 12 . Добавляем к результату единицу, взятую из предыдущего подсчета. 13 больше 10 , пишем 3 на нужное место и сохраняем единицу.

У нас больше не осталось разрядов, которые надо перемножить, однако единица в запасе все еще есть. Мы просто запишем ее под горизонтальную черту с левой стороны от всех уже имеющихся там цифр:

Процесс подсчета с помощью столбика на этом завершен. Мы получили шестизначное число, которое и является верным решением нашей задачи.

Ответ: 45 027 · 3 = 135 081 .

Чтобы было более понятно, мы представили алгоритм умножения многозначного натурального числа на однозначное в виде схемы. Здесь верно отражена самая суть процесса подсчета, однако не учтены некоторые нюансы:

Как быть, если в условии задачи стоит многозначное число, которое заканчивается нулем (или несколькими нулями подряд)? Рассмотрим на примере пошагово. Чтобы было проще, позаимствуем цифры из предыдущей задачи и просто допишем к исходному многозначному множителю пару нулей.

Решение

Cначала запишем числа нужным способом.

После этого проводим подсчеты, не обращая внимания на нули справа. Возьмем результаты из предыдущей задачи, чтобы не считать еще раз:

Финальный шаг решения – переписать имеющиеся в многозначном числе нули под горизонтальную черту в область результата. У нас нужно внести 2 дополнительных нуля:

Это число и будет ответом нашей задачи. На этом умножение столбиком завершено.

Ответ: 4 502 700 · 3 = 13 508 100 .

Этот способ вполне подходит и для тех случаев, когда оба множителя представляют собой многозначные натуральные числа. Разберем процесс сразу на примере, как и раньше. Сначала возьмем числа без нулей в конце, а потом рассмотрим и записи с нулями.

Пример 4

Условие: вычислить, сколько будет 207 · 8 063 .

Решение

Начнем, как всегда, с правильной записи множителей. Более удобным является способ записи, при котором множитель с большим количеством знаков стоит сверху. Так что запишем сначала 8 063 , а под ним 207 . Если число знаков в множителях совпадает, то порядок записи не имеет значения. В нашей задаче нам надо разместить цифры первого множителя под цифрами второго справа налево:

Начинаем последовательно перемножать значения разрядов. При этом у нас будут получаться результаты, которые называются неполными произведениями.

1. Первый шаг состоит в том, что нам надо перемножить между собой значения единиц в первом и втором множителе. В нашем случае это 3 и 7 . Все делаем так же, как мы уже объясняли в предыдущем пункте (если нужно, прочитайте его еще раз). В итоге у нас получится первое неполное произведение, которое является промежуточным результатом:

2. Второй шаг заключается в перемножении значений десятков. Умножаем столбиком первый множитель на значение разряда десятков второго множителя (при условии, что он не равен 0). Записываем результат под чертой под разрядом десятков. Если же во втором множителе на месте десятков стоит 0 , то сразу переходим к следующему этапу.

3. Последующие шаги выполняем аналогично, перемножая по очереди значения нужных разрядов (если они не равны 0). Вносим результаты под черту.

Итак, нам надо умножить 8 063 на значения сотен в 207 (т.е. на два). Мы получили второе неполное произведение, запишем его так:

У нас получились все нужные нам неполные произведения. Их количество равно числу разрядов во втором множителе (кроме 0). Последнее, что нам осталось сделать, – это сложить два произведения в столбик, используя ту же запись. Мы никуда не переписываем цифры: они остаются с тем же сдвигом влево. Подчеркнем их дополнительной горизонтальной чертой и поставим слева плюс. Складываем согласно уже изученным правилам сложения в столбик (запоминаем десятки, если число получилось больше 10 , и прибавляем их на следующем этапе). В нашей задаче получится:

Получившееся под чертой семизначное число – это и есть нужный нам результат умножения исходных натуральных чисел.

Ответ: 8 063 · 207 = 1 669 041 .

Процесс умножения двух многозначных чисел столбиков также можно представить в виде наглядной схемы:

Чтобы лучше закрепить материал, приведем решение еще одного примера.

Пример 5

Условие: умножьте 297 на 321 .

Решение

Начинаем с правильной записи множителей. Количество знаков в них одинаковое, так что порядок записи особого значения не имеет:

1. Первый этап – умножаем 297 на 1 , которая стоит в разряде единиц второго множителя.

2. Потом умножаем таким же образом первый множитель на 2 , что стоит в десятках второго множителя. Получаем второе неполное произведение.

Как умножать столбиком

Умножение многозначных чисел обычно выполняют столбиком, записывая числа друг под другом так, чтобы цифры одинаковых разрядов стояли друг под другом (единицы под единицами, десятки под десятками и т. д.). Для удобства сверху обычно записывается то число, которое имеет больше цифр. Слева между числами ставится знак действия. Под множителем проводят черту. Под чертой пишут цифры произведения по мере их получения.

Рассмотрим для начала умножение многозначного числа на однозначное. Пусть требуется умножить 846 на 5:

Умножить 846 на 5 — значит, сложить 5 чисел, каждое из которых равно 846. Для этого достаточно взять сначала 5 раз по 6 единиц, потом 5 раз по 4 десятка и наконец 5 раз по 8 сотен.

5 раз по 6 единиц = 30 единиц, т. е. 3 десятка. Пишем 0 под чертой на месте единиц, а 3 десятка запоминаем. Для удобства, чтобы не запоминать можно написать 3 над десятками множимого:

5 раз по 4 десятка = 20 десятков, прибавляем к ним ещё 3 десятка = 23 десятка, т. е. 2 сотни и 3 десятка. Пишем 3 десятка под чертой на месте десятков, а 2 сотни запоминаем:

5 раз по 8 сотен = 40 сотен, прибавляем к ним ещё 2 сотни = 42 сотни. Пишем под чертой 42 сотни, т. е. 4 тысячи и 2 сотни. Таким образом, произведение 846 на 5 оказывается равным 4230:

Теперь рассмотрим умножение многозначных чисел. Пусть требуется умножить 3826 на 472:

Умножить 3826 на 472 — значит, сложить 472 одинаковых числа, каждое из которых равно 3826. Для этого надо сложить 3826 сначала 2 раза, потом 70 раз, потом 400 раз, т. е. умножить множимое отдельно на цифру каждого разряда множителя и полученные произведения сложить в одну сумму.

2 раза по 3826 = 7652. Пишем полученное произведение под чертой:

Это не окончательное произведение, пока мы умножили только на одну цифру множителя. Полученное число называется частичным произведением . Теперь наша задача умножить множимое на цифру десятков. Но перед этим надо запомнить один важный момент: каждое частичное произведение нужно записывать под той цифрой, на которую происходит умножение.

Умножаем 3826 на 7. Это будет второе частичное произведение (26782):

Умножаем множимое на 4. Это будет третье частичное произведение (15304):

Под последним частичным произведением проводим черту и выполняем сложение всех полученных частичных произведений. Получаем полное произведение (1 805 872):

Если во множителе встречается нуль, то обычно на него не умножают, а сразу переходят к следующей цифре множителя:

Когда множимое и (или) множитель оканчиваются нулями, умножение можно выполнить не обращая на них внимания, и в конце, к произведению добавить столько нулей, сколько их во множимом и во множителе вместе.

Например, необходимо вычислить 23 000 · 4500. Сначала умножим 23 на 45, не обращая внимание на нули:

И теперь, справа к полученному произведению припишем столько нулей, сколько их во множимом и во множителе вместе. Получится 103 500 000.

Калькулятор умножения столбиком

Данный калькулятор поможет вам выполнить умножение столбиком. Просто введите множимое и множитель и нажмите кнопку Вычислить.

Не любишь математику? Ты просто не умеешь ею пользоваться! На самом деле, это увлекательная наука. И наша подборка необычных методов умножения подтверждает это.


Умножай на пальцах, как купец

Этот метод позволяет умножать числа от 6 до 9 . Для начала согни обе руки в кулаки. Затем на левой руке отогни столько пальцев, на сколько первый множитель больше числа 5. На правой проделай то же самое для второго множителя. Посчитай количество разогнутых пальцев и умножь сумму на десять. А теперь перемножь сумму загнутых пальцев левой и правой руки. Сложив обе суммы, получишь результат.

Пример. Умножим 6 на 7. Шесть больше пяти на один, значит на левой руке отгибаем один палец. А семь — на два, значит на правой — два пальца. В сумме — это три, а после умножения на 10 — 30. Теперь перемножим четыре загнутых пальца левой руки и три — правой. Получим 12. Сумма 30 и 12 даст 42.

Вообще-то здесь речь идет о простой таблице умножения, которую хорошо бы знать наизусть. Но этот метод хорош для самопроверки, да и пальцы размять полезно.

Умножай, как Ферроль

Этот способ получил название по фамилии немецкого инженера, который им пользовался. Метод позволяет быстро перемножить числа от 10 до 20 . Если потренируешься, то сможешь делать это даже в уме.

Суть простая. В итоге всегда будет получаться трехзначное число. Так что сначала считаем единицы, потом — десятки, затем — сотни.

Пример. Умножим 17 на 16. Чтобы получить единицы, умножаем 7 на 6, десятки — складываем произведение 1 и 6 с произведением 7 и 1, сотни — умножаем 1 на 1. В итоге получим 42, 13 и 1. Для удобства запишем их в столбик и сложим. Вот и итог!

Умножай, как японец

Этот графический способ, которым пользуются японские школьники, позволяет легко перемножить двух- и даже трехзначные числа. Чтобы опробовать его, приготовь бумагу и ручку.

Пример. Умножим 32 на 143. Для этого нарисуем сетку: первое число отразим тремя и двумя линиями с отступом по горизонтали, а второе — одной, четырьмя и тремя линиями по вертикали. В местах пересечения линий поставим точки. В итоге у нас должно получиться четырехзначное число, поэтому условно разделим таблицу на 4 сектора. И пересчитаем точки, попавшие в каждый из них. Получаем 3, 14, 17 и 6. Чтобы получить ответ, лишние единички у 14 и 17 прибавим к предыдущему числу. Получим 4, 5 и 76 — 4576.

Умножай, как итальянец

Еще один интересный графический способ используется в Италии. Пожалуй, он проще японского: точно не запутаешься при переносе десятков. Чтобы перемножить большие числа с его помощью, нужно начертить сетку . По горизонтали сверху записываем первый множитель, а по вертикали справа — второй. При этом на каждую цифру должна приходиться одна клетка.

Теперь перемножим цифры каждого ряда на цифры каждой колонки. Результат запишем в клетку (разделенную надвое) на их пересечении. Если получилось однозначное число, то в верхнюю часть клетки пишем 0, а в нижнюю — полученный результат.

Осталось сложить все числа, оказавшиеся в диагональных полосках. Начинаем с нижней правой клетки. Десятки при этом прибавляем к единицам в соседнем столбике.

Вот как мы умножили 639 на 12.

Весело, правда? Нескучной тебе математики! И помни, что гуманитарии в ИТ тоже нужны!

Давайте рассмотрим, как можно умножать двузначные числа, используя традиционные методы, которым нас обучают в школе. Некоторые из этих методов, могут позволить вам быстро перемножать в уме двузначные числа при достаточной тренировке. Знать эти методы полезно. Однако важно понимать, что это лишь вершина айсберга. В данном уроке рассмотрены наиболее популярные приемы умножения двузначных чисел.

Первый способ — раскладка на десятки и единицы

Самым простым для понимания способом умножения двузначных чисел является тот, которому нас научили в школе. Он заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

Например: 63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 + 3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия. Сначала умножаются десятки друг на друга. Потом складываются 2 произведения единиц на десятки. Затем прибавляется произведение единиц. Схематично это можно описать так:

  • Первое действие: 60*80 = 4800 — запоминаем
  • Второе действие: 60*5+3*80 = 540 — запоминаем
  • Третье действие: (4800+540)+3*5= 5355 — ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Вывод. Не трудно убедиться в том, что этот способ не является самым эффективным, то есть позволяющим при наименьших действиях получить правильный результат. Следует принять во внимание другие способы.

Второй способ — арифметические подгонки

Приведение примера к удобному виду является достаточно распространенным способом счета в уме. Подгонять пример удобно, когда вам нужно быстро найти примерный или точный ответ. Желание подгонять примеры под определенные математические закономерности часто воспитывается на математических кафедрах в университетах или в школах в классах с математическим уклоном. Людей учат находить простые и удобные алгоритмы решения различных задач. Вот некоторые примеры подгонки:

Пример 49*49 может решаться так: (49*100)/2-49. Сначала считается 49 на сто — 4900. Затем 4900 делится на 2, что равняется 2450, затем вычитается 49. Итого 2401.

Произведение 56*92 решается так: 56*100-56*2*2*2. Получается: 56*2= 112*2=224*2=448. Из 5600 вычитаем 448, получаем 5152.

Этот способ может оказаться эффективнее предыдущего только в случае, если вы владеете устным счетом на базе перемножения двузначных чисел на однозначные и можете держать в уме одновременно несколько результатов. К тому же приходится тратить время на поиск алгоритма решения, а также уходит много внимания за правильным соблюдением этого алгоритма.

Вывод. Способ, когда вы стараетесь умножить 2 числа, раскладывая их на более простые арифметические процедуры, отлично тренирует ваши мозги, но связан с большими мысленными затратами, а риск получить неправильный результат выше, чем при первом методе.

Третий способ — мысленная визуализация умножения в столбик

56*67 — посчитаем в столбик.

Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа. Но его можно упростить. Во втором уроке рассказывалось, что важно уметь быстро умножать однозначные числа на двузначные. Если вы уже умеете это делать на автомате, то счет в столбик в уме для вас будет не таким уж и трудным. Алгоритм таков

Первое действие: 56*7 = 350+42=392 — запомните и не забывайте до третьего действия.

Второе действие: 56*6=300+36=336 (ну или 392-56)

Третье действие: 336*10+392=3360+392=3 752 — тут посложнее, но вы можете начинать называть первое число, в котором уверены — «три тысячи…», а пока говорите, складывайте 360 и 392.

Вывод: счет в столбик напрямую сложен, но вы можете, при наличии навыка быстрого умножения двузначных чисел на однозначные, его упросить. Добавьте в свой арсенал и этот метод. В упрощенном виде счет в столбик является некоторой модификацией первого метода. Что лучше — вопрос на любителя.

Как можно заметить, ни один из описанных выше способов не позволяет считать в уме достаточно быстро и точно все примеры умножения двузначных чисел. Нужно понимать, что использование традиционных способов умножения для счета в уме не всегда является рациональным, то есть позволяющим при наименьших усилиях достигать максимального результата.

Умножение двузначных чисел — навык, крайне необходимый для нашей повседневной жизни. Люди постоянно сталкиваются с потребностью перемножить что-либо в уме: ценник в магазине, массу продуктов или размер скидки. Но как умножать двузначные числа быстро и без проблем? Давайте разберемся.

Как умножить двузначное число на однозначное?

Начнем с простой задачи — как умножать двузначные числа на однозначные.

Для начала, двузначное число — это такое число, которое состоит из определенного количества десятков и единиц.

Для того чтобы умножить двузначное число на однозначное в столбец, нужно написать нужное двузначное число, а под ним соответствующее однозначное. Далее следует поочередно умножить на заданное число сначала единицы, а потом — десятки. Если при умножении единиц получилось число больше 10, то количество десятков нужно просто перенести в следующий разряд, прибавив их.

Умножение двузначных чисел на десятки

Умножение двузначных чисел на десятки — задача ненамного сложнее, чем умножение на однозначные числа. Основной порядок действий остается тем же:

  • Выписать числа друг под другом в столбец, при этом нуль должен находиться как бы «сбоку», чтобы не мешать при арифметических действиях.
  • Умножить двузначное число на количество десятков, не забыть про перенос некоторых цифр в следующие разряды.
  • Единственное, что отличает этот пример от предыдущего — в конце получившегося ответа нужно добавить нуль, так что десятки, которые были опущены в начале, становятся учтенными.

Как перемножить два двузначных числа?

После того как вы полностью разобрались с умножением двузначных и однозначных чисел, можно начинать думать, как умножать столбиком двузначные числа друг на друга. На самом деле это действие тоже не должно потребовать от вас больших усилий, так как принцип все еще остается тем же.

  • Выписываем данные числа в столбец — единицы под единицами, десятки под десятками.
  • Начинаем умножение с единицы точно так же, как в примерах с однозначными числами.
  • После того как вы получили первое число, умножив единицы на данную цифру, нужно таким же образом умножить десятки на эту же цифру. Внимание: ответ нужно записывать строго под десятками. Пустое место под единицами — это неучтенный нуль. Вы можете записывать его, если вам так удобнее.
  • Перемножив и десятки, и единицы и получив два числа, записанных одно под одним, их нужно сложить в столбец. Получившееся значение и является ответом.

Как правильно умножать двузначные числа? Для этого недостаточно просто прочитать или выучить приведенную инструкцию. Помните, для того чтобы освоить принцип, как умножать двузначные числа, в первую очередь нужно постоянно практиковаться — решать как можно больше примеров, как можно реже пользоваться калькулятором.

Как умножать в уме

Научившись блестяще умножать на бумаге, можно задаться вопросом, как быстро умножить двузначные числа в уме.

Конечно, это не самая простая задача. Она требует некоторой концентрации, хорошей памяти, а также способности удерживать в голове некоторое количество информации. Однако и этому можно научиться, приложив достаточно усилий, тем более если подобрать правильный алгоритм. Очевидно, что легче всего умножать на круглые числа, поэтому самым простым способом является разложение чисел на множители.

  • Для начала следует разбить одно из данных двузначных чисел на десятки. Например, 48 = 4 × 10 + 8.
  • Далее нужно последовательно перемножить сначала единицы, а потом десятки со вторым числом. Это достаточно сложные для выполнения в уме операции, так как нужно одновременно умножать числа друг на друга и держать в уме уже получившийся результат. Вероятнее всего, вам будет трудно справиться с этой задачей с первого раза, но, если быть достаточно усердным, этот навык можно развить, ведь понять, как правильно умножать двузначные числа в уме, можно только на практике.

Некоторые хитрости при умножении двузначных чисел

Но существует ли более легкий способ в уме умножать двузначные числа, и как это сделать?

Есть несколько хитростей. Они помогут вам легко и быстро умножать двузначные числа.

  • При умножении на одиннадцать нужно просто поставить сумму десятков и единиц в середину данного двузначного числа. К примеру, нам понадобилось умножить 34 на 11.

Ставим 7 в середину, 374. Это и есть ответ.

Если при сложении получается число больше 10, то следует просто добавить единицу к первому числу. Например, 79 × 11.

  • Иногда легче разложить число на множители и последовательно умножить их. Например, 16 = 2 × 2 × 2 × 2, поэтому можно просто 4 раза умножить исходное число на 2.

14 = 2 × 7, поэтому при выполнении математических операций можно умножить сначала на 7, а потом на 2.

  • Для того чтобы умножить число на числа, кратные 100, например, 50 или 25, можно умножить это число на 100, а потом разделить на 2 или 4 соответственно.
  • Еще нужно помнить, что иногда при умножении легче не складывать, а отнимать числа друг от друга.

Например, чтобы умножить число на 29, можно сначала умножить его на 30, а потом отнять от полученного числа данное число один раз. Это правило справедливо для любых десятков.

Как научить ребенка умножать в столбик на однозначное, двузначное и трехзначное число | В помощь родителям младшего школьника

По многим программам умножение и деление в столбик — темы, которые проходят в конце учебного года. И в 3 классе, и в 4. Так сложилось, что этот учебный год наши дети заканчивают дома. В этой статье я расскажу, как научить ребенка решать примеры на умножение в столбик. Плюс обсудим основные ошибки, которые допускают дети. 

Как научить умножать на однозначное число. 

Например, нам нужно умножить 189 на 5.

Умножаем единицы. 5 × 9= 45. 5 пишем под единицами, а 4 десятка запоминаем. Умножаем десятки. 5 × 8 = 40. Да ещё 4 запоминали. 40 + 4 = 44. 4 пишем под десятками, а 4 запоминаем. Умножаем сотни. 5 × 1 = 5, да 4 запоминали. 5 +4 = 9. Значит, если 189 умножить на 5, получится 945.

Важно! Сначала умножаем, а потом прибавляет то число, которое запоминали. Если сначала прибавить число, которое запоминали, а потом умножить, то получится другой ответ. 

Как умножить на двузначное число

Рассмотрим пример 859 × 96. 

Сначала 859 умножаем на количество единиц. Т. е. на 6. Получилось число 5154. Это первый промежуточный ответ.

Теперь 859 будет умножать на десятки. А результат начнем записывать под десятками. Т. е. второй промежуточный ответ сдвигается влево. Это очень важно. Может получиться ошибка. 

859 × 9 = 7731. Это второй промежуточный ответ. А теперь оба ответа складываем. Получился ответ 82464.

Как умножать на трехзначное число. 

Умножение на трехзначное число происходит так же, как и на двузначное. Только промежуточных ответа будет три. 

Например, нам нужно умножить 1029 на 374.

Скоро выйдут новые полезные материалы, подписывайтесь на мой канал

как объяснить ребенку деление в столбик

Научить ребенка делению столбиком просто. Необходимо объяснить алгоритм этого действия и закрепить пройденный материал.

  • Согласно школьной программе, деление столбиком детям начинают объяснять уже в третьем классе. Ученики, которые схватывают все «на лету», быстро понимают эту тему
  • Но, если ребенок заболел и пропустил уроки математики, или он не понял тему, тогда родители должны самостоятельно малышу объяснить материал. Нужно максимально доступно донести до него информацию
  • Мамы и папы во время учебного процесса ребенка должны быть терпеливыми, проявляя такт по отношению к своему чаду. Ни в коем случае нельзя кричать на ребенка, если у него что-то не получается, ведь так можно отбить у него всю охоту к занятиям



Важно: Чтобы ребенок понял деление чисел, он должен досконально знать таблицу умножения. Если малыш плохо знает умножение, он не поймет деление.

Во время домашних дополнительных занятий можно пользоваться шпаргалками, но ребенок должен выучить таблицу умножения, прежде чем, приступать к теме «Деление».

Итак, как объяснить ребенку деление столбиком :

  • Постарайтесь сначала объяснить на маленьких цифрах. Возьмите счетные палочки, например, 8 штук
  • Спросите у ребенка, сколько пар в этом ряду палочек? Правильно — 4. Значит, если разделить 8 на 2, получится 4, а при делении 8 на 4 получится 2
  • Пусть ребенок сам разделит другое число, например, более сложное: 24:4
  • Когда малыш освоил деление простых чисел, тогда можно переходить к делению трехзначных чисел на однозначные



Деление всегда дается детям немного сложнее, чем умножение. Но усердные дополнительные занятия дома помогут малышу понять алгоритм этого действия и не отставать от сверстников в школе.

Начинайте с простого — деление на однозначное число:

Важно: Просчитайте в уме, чтобы деление получилось без остатка, иначе ребенок может запутаться.

Например, 256 разделить на 4:

  • Начертите на листе бумаги вертикальную линию и разделите ее с правой части пополам. Слева напишите первую цифру, а справа над чертой вторую
  • Спросите у малыша, сколько четверок помещается в двойке — нисколько
  • Тогда берем 25. Для наглядности отделите это число сверху уголком. Опять спросите у ребенка, сколько помещается четверок в двадцати пяти? Правильно — шесть. Пишем цифру «6» в правом нижнем углу под линией. Ребенок должен использовать таблицу умножения для правильного ответа
  • Запишите под 25 цифру 24, и подчеркните, чтобы записать ответ — 1
  • Опять спрашивайте: в единице сколько помещается четверок — нисколько. Тогда сносим к единице цифру «6»
  • Получилось 16 — сколько четверок помещается в этом числе? Правильно — 4. Записываем «4» рядом с «6» в ответе
  • Под 16 записываем 16, подчеркиваем и получается «0», значит мы разделили правильно и ответ получился «64»

Письменное деление на двузначное число



Когда ребенок освоил деление на однозначное число, можно двигаться дальше. Письменное деление на двузначное число чуть сложнее, но если малыш поймет, как производится это действие, тогда ему не составит труда решать такие примеры.

Важно: Снова начинайте объяснять с простых действий. Ребенок научится правильно подбирать цифры и ему будет легко делить сложные числа.

Выполните вместе такое простое действие: 184:23 — как нужно объяснять:

  • Разделим сначала 184 на 20, получается примерно 8. Но мы не пишем цифру 8 в ответ, так как это пробная цифра
  • Проверяем, подходит 8 или нет. Умножаем 8 на 23, получается 184 — это именно то число, которое у нас стоит в делителе. Ответ будет 8

Важно: Чтобы ребенок понял, попробуйте вместо восьмерки взять 9, пусть он умножит 9 на 23, получается 207 — это больше, чем у нас в делителе. Цифра 9 нам не подходит.

Так постепенно малыш поймет деление, и ему будет легко делить более сложные числа:

  • Разделим 768 на 24. Определите первую цифру частного — делим 76 не на 24, а на 20, получается 3. Записываем 3 в ответ под чертой справа
  • Под 76 записываем 72 и проводим линию, записываем разность — получилось 4. Эта цифра делится на 24? Нет — сносим 8, получается 48
  • Цифра 48 делится на 24? Правильно — да. Получается 2, записываем эту цифру в ответ
  • Получилось 32. Теперь можно проверить — правильно ли мы выполнили действие деления. Сделайте умножение в столбик: 24х32, получается 768, значит все правильно



Если ребенок научился выполнять деление на двузначное число, тогда необходимо перейти к следующей теме. Алгоритм деления на трехзначное число такой же, как и алгоритм деления на двузначное число.

Например:

  • Разделим 146064 на 716. Берем сначала 146 — спросите у ребенка делится это число на 716 или нет. Правильно — нет, тогда берем 1460
  • Сколько раз число 716 поместится в числе 1460? Правильно — 2, значит пишем эту цифру в ответе
  • Умножаем 2 на 716, получается 1432. Записываем эту цифру под 1460. Получается разность 28, записываем под чертой
  • Сносим 6. Спросите у ребенка — 286 делится на 716? Правильно — нет, поэтому пишем 0 в ответе рядом с 2. Сносим еще цифру 4
  • Делим 2864 на 716. Берем по 3 — мало, по 5 — много, значит получается 4. Умножаем 4 на 716, получается 2864
  • Запишите 2864 под 2864, получается в разности 0. Ответ 204

Важно: Для проверки правильности выполнения деления, умножьте вместе с ребенком в столбик — 204х716=146064. Деление выполнено правильно.



Пришло время ребенку объяснить, что деление может быть не только нацело, но и с остатком. Остаток всегда меньше делителя или равен ему.

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375



Совет: Если ребенок что-то не понял — не злитесь. Пусть пройдет пару дней и снова постарайтесь объяснить материал.

Уроки математики в школе также будут закреплять знания. Пройдет время и малыш будет быстро и легко решать любые примеры на деление.

Алгоритм деления чисел заключается в следующем:

  • Сделать прикидку числа, которое будет стоять в ответе
  • Найти первое неполное делимое
  • Определить число цифр в частном
  • Найти цифры в каждом разряде частного
  • Найти остаток (если он есть)

По такому алгоритму выполняется деление как на однозначные числа, так и на любое многозначное число (двузначное, трехзначное, четырехзначное и так далее).



Занимаясь с ребенком, чаще ему задавайте примеры на выполнение прикидки. Он должен быстро в уме подсчитать ответ. Например:

  • 1428:42
  • 2924:68
  • 30296:56
  • 136576:64
  • 16514:718

Для закрепления результата можно использовать такие игры на деление:

  • «Головоломка». Напишите на листе бумаги пять примеров. Только один из них должен быть с правильным ответом.

Условие для ребенка: Среди нескольких примеров, только один решен правильно. Найди его за минуту.

Видео: Игра арифметика для детей сложение вычитание деление умножение

Видео: Развивающий мультфильм Математика Изучение наизусть таблицы умножения и деления на 2

Как научить ребенка делению? Самый простой метод – выучить деление столбиком . Это гораздо проще, чем проводить вычисления в уме, помогает не запутаться, не «потерять» цифры и выработать мысленную схему, которая в дальнейшем будет срабатывать автоматически.

Вконтакте

Как проводится

Деление с остатком – это способ, при котором число нельзя разделить ровно на несколько частей. В результате данного математического действия, помимо целой части, остается неделимый кусок.

Приведем простой пример того, как делить с остатком:

Есть банка на 5 литров воды и 2 банки по 2 литра. Когда из пяти литровой банки воду переливают в двухлитровые, в пятилитровой останется 1 литр не использованной воды. Это и есть остаток. В цифровом варианте это выглядит так:

5:2=2 ост (1). Откуда 1? 2х2=4, 5-4=1.

Теперь рассмотрим порядок деления в столбик с остатком. Это визуально облегчает процесс расчета и помогает не потерять числа.

Алгоритм определяет расположение всех элементов и последовательность действий, по которой совершается вычисление. В качестве примера, разделим 17 на 5.

Основные этапы :

  1. Правильная запись. Делимое (17) – располагается по левую сторону. Правее от делимого пишут делитель (5). Между ними проводят вертикальную черту (обозначает знак деления), а затем, от этой черты проводят горизонтальную, подчеркивая делитель. Основные черты обозначена оранжевым цветом.
  2. Поиск целого. Далее, проводят первый и самый простой расчет – сколько делителей умещается в делимом. Воспользуемся таблицей умножения и проверим по порядку: 5*1=5 — помещается, 5*2=10 — помещается, 5*3=15 — помещается, 5*4=20 – не помещается. Пять раз по четыре – больше чем семнадцать, значит, четвертая пятерка не вмещается. Возвращаемся к трем. В 17 литровую банку влезет 3 пятилитровых. Записываем результат в форму: 3 пишем под чертой, под делителем. 3 – это неполное частное.
  3. Определение остатка. 3*5=15. 15 записываем под делимым. Подводим черту (обозначает знак «=»). Вычитаем из делимого полученное число: 17-15=2. Записываем результат ниже под чертой – в столбик (отсюда и название алгоритма). 2 – это остаток.

Обратите внимание! При делении таким образом, остаток всегда должен быть меньше делителя.

Когда делитель больше делимого

Вызывают затруднение случаи, когда делитель получается больше делимого. Десятичные дроби в программе за 3 класс еще не изучаются, но, следуя логике, ответ надо записывать в виде дроби – в лучшем случае десятичной, в худшем – простой. Но (!) помимо программы, методику вычисления ограничивает поставленная задача : необходимо не разделить, а найти остаток! часть им не является! Как решить такую задачу?

Обратите внимание! Существует правило для случаев, когда делитель больше делимого: неполное частное равно 0, остаток равен делимому.

Как разделить число 5 на число 6, выделив остаток? Сколько 6-литровых банок влезет в пятилитровую? , потому что 6 больше 5.

По заданию необходимо заполнить 5 литров – не заполнено ни одного. Значит, остались все 5. Ответ: неполное частное = 0, остаток = 5.

Деление начинают изучать в третьем классе школы. К этому времени ученики уже должны , что позволяет им совершать деление двузначных чисел на однозначные.

Решите задачу: 18 конфет нужно раздать пятерым детям. Сколько конфет останется?

Примеры:

Находим неполное частное: 3*1=3, 3*2=6, 3*3=9, 3*4=12, 3*5=15. 5 – перебор. Возвращаемся к 4.

Остаток: 3*4=12, 14-12=2.

Ответ: неполное частное 4, осталось 2.

Вы можете спросить, почему при делении на 2, остаток либо равен 1, либо 0. По таблице умножения, между цифрами, кратными двум существует разница в единицу .

Еще одна задача: 3 пирожка надо разделить на двоих.

4 пирожка разделить на двоих.

5 пирожков разделить на двоих.

Работа с многозначными числами

Программа за 4 класс предлагает более сложный процесс проведения деления с увеличением расчетных чисел. Если в третьем классе расчеты проводились на основе базовой таблицы умножения в пределах от 1 до 10, то четвероклассники вычисления проводят с многозначными числами более 100.

Данное действие удобнее всего выполнять в столбик, так как неполное частное также будет двузначным числом (в большинстве случаев), а алгоритм столбика облегчает вычисления и делает их более наглядными.

Разделим многозначные числа на двузначные : 386:25

Данный пример отличается от предыдущих количеством уровней расчета, хотя вычисления проводят по тому же принципу, что и ранее. Рассмотрим подробнее:

386 – делимое, 25 – делитель. Необходимо найти неполное частное и выделить остаток.

Первый уровень

Делитель – двузначное число. Делимое – трехзначное. Выделяем у делимого первые две левые цифры – это 38. Сравниваем их с делителем. 38 больше 25? Да, значит, 38 можно разделить на 25. Сколько целых 25 входит в 38?

25*1=25, 25*2=50. 50 больше 38, возвращаемся на один шаг назад.

Ответ – 1. Записываем единицу в зону не полного частного .

38-25=13. Записываем число 13 под чертой.

Второй уровень

13 больше 25? Нет – значит можно «опустить» цифру 6 вниз, дописав ее рядом с 13, справа. Получилось 136. 136 больше 25? Да – значит можно его вычесть. Сколько раз 25 поместиться в 136?

25*1=25, 25*2=50, 25*3=75, 25*4=100, 25*5=125, 256*=150. 150 больше 136 – возвращаемся назад на один шаг. Записываем цифру 5 в зону неполного частного, справа от единицы.

Вычисляем остаток:

136-125=11. Записываем под чертой. 11 больше 25? Нет – деление провести нельзя. У делимого остались цифры? Нет – делить больше нечего. Вычисления закончены.

Ответ: неполное частное равно 15, в остатке 11.

А если будет предложено такое деление, когда двузначный делитель больше первых двух цифр многозначного делимого? В таком случае, третья (четвертая, пятая и последующая) цифра делимого принимает участие в вычислениях сразу.

Приведем примеры на деление с трех- и четырехзначными числами:

75 – двузначное число. 386 – трехзначное. Сравниваем первые две цифры слева с делителем. 38 больше 75? Нет – деление провести нельзя. Берем все 3 цифры. 386 больше 75? Да – деление провести можно. Проводим вычисления.

75*1=75, 75*2=150, 75*3=225, 75*4=300, 75*5= 375, 75*6=450. 450 больше 386 – возвращаемся на шаг назад. Записываем 5 в зону неполного частного.

Деление – одна из четырех основных математических операций (сложение , вычитание , умножение). Деление, как и остальные операции важно не только в математике, но и в повседневной жизни. Например, вы целым классом (человек 25) сдадите деньги и купите подарок учительнице, а потратите не все, останется сдача. Так вот сдачу вам надо будет поделить на всех. В работу вступает операция деления, которая поможет вам решить эту задачу.

Деление – интересная операция, в чем мы и убедимся с вами в этой статье!

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение . 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

    Найти сумму цифр делимого.

    Поделить на 3 или 9 (в зависимости от того, что вам нужно).

    Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Умножение и деление

Умножение и деление – это противоположные друг другу операции. Умножение можно использовать как проверку деления, а деление – как проверку умножения. Подробнее узнать об умножении и освоить операцию можете в нашей статье про умножение . В которой подробно описано умножение и как правильно выполнять. Там же найдете таблицу умножения и примеры для тренировки.

Приведем пример проверки деления и умножения. Допустим, дан пример 6*4. Ответ: 24. Тогда проверим ответ делением: 24:4=6, 24:6=4. Решено верно. В этом случае проверка производится путем деления ответа на один из множителей.

Или дан пример на деление 56:8. Ответ: 7. Тогда проверкой будет 8*7=56. Верно? Да. В данном случае проверка производится путем умножения ответа на делитель.

Деление 3 класс

В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:

Задача 1 . Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?

Задача 2 . На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?

Задача 3 . Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?

Задача 4 . Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?

Деление 4 класс

Деление в четвертом классе – более серьезное, чем в третьем. Все вычисления проводятся методом деления в столбик, а числа, которые участвуют в делении – не маленькие. Что же такое деление в столбик? Ответ можете найти ниже:

Деление в столбик

Что такое деление в столбик? Это метод позволяющий находить ответ на деление больших чисел. Если простые числа как 16 и 4, можно поделить, и ответ понятен – 4. То 512:8 в уме для ребенка не просто. А рассказать о технике решения подобных примеров – наша задача.

Рассмотрим пример, 512:8.

1 шаг . Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг . Деление начинаем слева направо. Сначала берем цифру 5:

3 шаг . Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг . Ставим точку под делителем.

5 шаг . После 51 стоит еще цифра 2, а значит в ответе будет еще одно число, то есть. частное – двузначное число. Ставимвторую точку:

6 шаг . Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг . Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг . Затем из 51 вычитаем 48 и получаем ответ 3.

* 9 шаг *. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Итак, ответ 64, без остатка. Если бы делили число 513, то в остатке была бы единица.

Деление трехзначных

Деление трехзначных чисел выполняется методом деления в столбик, который был объяснен на примере выше. Пример как раз-таки трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод такого деления довольно прост. 2/3 – делимое, 1/4 – делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3) (4/1), (2/3)*4, это равно – 8/3 или 2 целые и 2/3.Приведем еще пример, с иллюстрацией для наилучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, переворачиваем делитель 2/5 и получаем 5/2, заменяя деление на умножение. Получаем тогда (4/7)*(5/2). Производим сокращение и ответ:10/7, затем выносим целую часть: 1 целая и 3/7.

Деление числа на классы

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 — класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Деление натуральных чисел

Деление натуральных чисел – это самое простое деление описанные в данной статье. Оно может быть, как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс «Ускоряем устный счет, НЕ ментальная арифметика», чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление презентация

Презентация – еще один способ наглядно показать тему деления. Ниже мы найдете ссылку на прекрасную презентацию, в которой хорошо объясняется как делить, что такое деление, что такое делимое, делитель и частное. Время зря не потратите, а свои знания закрепите!

Примеры на деление

Легкий уровень

Средний уровень

Сложный уровень

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра «Угадай операцию»

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Упрощение»

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Быстрое сложение»

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Визуальная геометрия»

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра «Копилка»

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Игра «Быстрое сложение перезагрузка»

Игра «Быстрое сложение перезагрузка» развивает мышление, память и внимание. Главная суть игры выбрать правильные слагаемые, сумма которых будет равна заданному числу. В этой игре на экране дается три цифры и дается задание, сложите цифру, на экране указывается какую цифру надо сложить. Вы выбираете из трех цифр нужные цифры и нажимаете их. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

В курс входит 30 уроков с полезными советами и упражнениями для развития детей. В каждом уроке полезный совет, несколько интересных упражнений, задание к уроку и дополнительный бонус в конце: развивающая мини-игра от нашего партнера. Длительность курса: 30 дней. Курс полезно проходить не только детям, но и их родителям.

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Первые годы школьной жизни в младших классах ребенку даются нелегко. Часто после урока математики они не совсем хорошо понимают пройденную тему. Чтобы помочь ребенку в усвоении пройденного материала, потребуется самому объяснить школьнику то, что ему не понятно. На помощь приходят родители, у которых моментально возникает вопрос: «Как объяснить ребенку деление?». Сделать это можно несколькими способами, но изначально стоит убедиться, что ребенок хорошо усвоил такие математические действия, как сложение, вычитание и умножение .(Прочитать про способы обучения детей сложению и умножению можете и ).

Обучение ребенка основам деления

Важно, чтобы ребенок понимал суть такого математического действия, как деление. Для этого необходимо ему объяснить, что деление представляет собой разделение чего-либо на равные доли. Рекомендуется превратить процесс обучения в интересную игру, чтобы ребенок был сконцентрирован.

Деление в игровой форме

СОВЕТ: Таблицу деления так же важно выучить, как и таблицу умножения. Лучше это делать на каникулах!

Помогите ребенку понять, что деление — это обратное действие умножению.

Самым простым способом объяснить деление является проведение наглядной демонстрации разделения предметов на равные доли . В качестве делимых предметов можно использовать все, что угодно, но желательно что-то интересное для ребенка. В качестве примера можно воспользоваться конфетами и игрушками.

Как объяснить ребенку деление при помощи игрушек?

Изначально нужно взять 2 конфеты и попросить ребенка разделить их между 2 плюшевыми игрушками. Благодаря такому простому примеру ребенок поймет суть математического деления. После этого можно переходить к более сложным примерам деления.

Как происходит деление, подробно и в игровой форме показывается в следующем видео:

Также вы можете взять коробку цветных карандашей, которая будет выступать одним целым, и предложить малышу разделить их между собой и вами поровну. После, попросите ребенка посчитать, сколько карандашей было вначале в коробке и сколько он смог раздать.

По мере понимания ребенка, родитель может увеличивать число предметов и количество участников задачи. Затем нужно рассказать, что не всегда получается разделить что-либо поровну и некоторые предметы иногда остаются «ничейными». К примеру, можно предложить разделить 9 яблок между бабушкой, дедушкой, папой и мамой. Ребенок должен понять, что все получат лишь по 2 яблока, а одно окажется в остатке.

Деление в игровой форме

Таким образом, вы объясните азы деления и подготовите ребенка к более сложным школьным задачам.

СОВЕТ: Старайтесь заниматься со своим ребенком в игровой форме. Тогда ему будет интересно заниматься, а значит, занятия пройдут весело и без особых усилий.

Также вам будет интересно и полезно распечатать таблицу деления в виде картинки.

Делить однозначные числа на однозначные проще всего с использованием . Для этого достаточно объяснить ребенку, что деление является действием обратным к умножению. Сделать это можно на любом правильном примере деления натуральных чисел.

Например: 2 умножить на 3 будет 6. Основываясь на данном примере продемонстрировать ребенку процесс деления. Следует действовать следующим образом: разделить 6 на любой множитель, например, на число 2. В ответе получится 3, то есть множитель неиспользованный при делении.

Таким способом можно делить многозначные (двухзначные) числа на однозначные.

Алгоритм деления в столбик

Прежде, чем начать объяснение деления в столбик, нужно рассказать ребенку о значении делимого, делителя и частного. В примере 20:4=5, 20 является делимым, 4 делителем, а 5 частным. У каждой отдельной цифры в примере одно наименование.

Многозначные числа (трехзначные и двухзначные) проще всего делить в столбик. Для этого нужно записать многозначные числа уголком.

Например, нужно разделить трехзначное число 369 на однозначное число 3.

В качестве делителя записано трехзначное число 369 , а в качестве делителя однозначное число 3. Первым делом важно объяснить ребенку, что деление в столбик происходит в несколько этапов:

  • Определение части делимого подходящего для первичного деления. В данном случае цифра 3. 3:3=1. Цифру 1 нужно записать в графу частное.
  • «Спустить» следующее делимое число. В данном случае это цифра 6. 6:3=2 . Полученное число 2 нужно записать в частное.
  • Далее необходимо «спустить» следующее делимое число 9. 9 делится без остатка на 3, полученный результат необходимо записать в частное. Результатом деления трехзначного числа 369 на 3 получается 123.

Деление десятичного числа на двухзначное проходит примерно так же. В случае с десятичным числом необходимо объяснить ребенку, что запятую в делителе переносят на столько знаков, на сколько перенесли в делимом. Далее следует обычное деление в столбик.

Необходимо предупредить ребенка о встречающихся случаях деления с остатком. В качестве примера можно поделить двухзначное число 26 на 5 столбиком. В результате остается остаток 1.

Важно после объяснения позволить ребенку самостоятельно решить несколько примеров, чтобы весь изученный материал надолго остался в памяти ребенка.

А еще Вы можете посмотреть видео, где все объясняют понятным языком.

И напоследок, не приучайте себя и ребенка пользоваться онлайн калькулятором, чтоб узнать, как разделить 145 на 9, 34 на 40, 100 на 4, 30 на 80, 416 на 52 и другие примеры. Это не принесет пользы не вам, ни ему.

В 1-ый класс идет не только ребенок – родители вместе с ним начинают и вместе с ним заканчивают образовательное учреждение. Учитель в школе не всегда успевает объяснить каждому отдельному ученику ту или иную дисциплину. Поэтому у — свои плюсы. Вы можете сами объяснить ребенку, индивидуально и не спеша то, что он не понял. В этот непростой период, главное — это набраться терпения и не ругать школьника из-за неправильных решений. Тогда все у вас получится.

Алгоритм деления чисел в столбик, обучение ребёнка. Особенности деления многозначных чисел и многочленов.

Школа даёт ребёнку не только дисциплину, развитие талантов и навыков общения, но и знания по фундаментальным наукам. Одна из них — математика.

Хотя программа и нагрузка на учеников часто меняются, но деление в столбик чисел с разным количеством разрядов остаётся неприступной с первого захода вершиной для многих из них. Потому без тренировок дома с родителями часто не обойтись.

Дабы не упустить время и предотвратить образование кома непонятного у ребёнка в математике, освежите в памяти свои знания по делению чисел столбиком. Статья вам в этом поможет.

Как правильно делить числа в столбик: алгоритм деления

Для деления чисел столбиком следуйте по таким шагам:

  • правильно запишите действие деления на бумаге. Выбирайте верхний правый угол тетради/листа. Если вы только учитесь выполнять действие деления в столбик, берите бумагу в клетку. Так вы сохраните визуальную последовательность решения,
  • разлинейте место между делимым и делителем.
    Вам поможет схема ниже.

  • планируйте пространство для деления в столбик. Чем длиннее число, которое подлежит делению, и чем корове делитель, тем ниже на станице спуститься решение,
  • первое действие деления совершайте с тем количеством цифр делимого, которое равно делителю. Например, если справа от разделительной линии у вас стоит однозначная цифра, то рассматривайте первую у делимого, если двухзначная — то 2 первых,
  • перемножьте числа под и над чертой и запишите результат под цифрами делимого, которые вы обозначили для первого действия,
  • завершайте действие вычитанием и определением остатка. Нарисуйте горизонтальную линию над ним, чтобы отделить первый шаг решения,
  • допишите следующую цифру делимого к остатку и продолжайте решение,
  • последний шаг деления — когда вы получите от вычитания 0 либо число, меньше делителя. Во втором случае ваш ответ будет с остатком, например, 17 и 3 в остатке.

Как объяснить ребенку деление и научить делить столбиком?

Во-первых, учтите ряд вводных факторов:

  • ребёнок знает таблицу умножения
  • хорошо разбирается и умеет применять на практике действия вычитания и сложения
  • понимает разницу между целым и его составными элементами
  • поиграйте с таблицей умножения. Положите её перед ребёнком и на примерах покажите удобство использования при делении,
  • объясните расположение делимого, делителя, частного, остатка. Предложите ребёнку повторить эти категории,
  • превратите процесс в игру, придумайте историю про цифры и действие деления,
  • подготовьте наглядные предметы для обучения. Подойдут счётные палочки, яблоки, монеты, игрушки, очищенные сведение или апельсин. Предлагайте их распределить между разным количеством людей, например, между мамой, папой и ребенком,
  • первым показывайте ребёнку действия с чётными числами, чтобы он видел результат деления, кратный двум.

Сам процесс освоения деления столбиком:

  • запишите цифры, разделив их границами. Повторите с ребёнком расположение категорий деления,
  • предложите ему проанализировать цифры делимого на предмет «больше-меньше» делителя. Помогайте вопросом — сколько раз одно число помещается во втором. В результате ребёнку следует выделить то число/числа, которые он будет применять для совершения первого действия,
  • подскажите алгоритм определения разрядности частного. Её удобно изобразить точками, которые потом превратятся в цифры,
  • помогите правильно определить и записать первое число в частное, совершите его умножение на делитель, запишите результат под делимым, выполните вычитание. Объясните, что результат вычитания всегда должен быть меньше делителя. В противном случае действие совершилось с ошибкой и его следует переделать,
  • следующий шаг — анализ ситуации с добавлением второго числа от делимого и определения количества раз повторения делителя в нём,
  • снова помогите с записью действия,
  • продолжайте до момента, когда результат от разницы составит ноль. Это актуально только для деления чисел без остатка,
  • закрепите знания у ребёнка еще несколькими примерами. Следите, чтобы он не устал, иначе дайте перерыв.

Как письменно делить в столбик двузначное число на однозначное и двузначное: примеры, объяснение

Приступим к пошаговому разбору примеров на деление в столбик.

Осуществите действие над цифрами 25 и 2:

  • запишите их рядом и разделите линиями границы,
  • определите нужное количество цифр делимого для первого действия,
  • запишите значение под делителем и результат умножения под делимым,
  • выполните вычитание,
  • допишите вторую цифру делимого и повторите действия на умножение и вычитание.

Частично выполненное задание на деление столбиком двузначного числа на однозначное смотрите ниже:

Учтите, что деление столбиком двухзначного числа на однозначное возможно и в одно действие.

Второй пример. Разделите 87 на 26 в столбик.

Алгоритм аналогичен рассмотренному выше с той лишь разницей, что учитывать нужно сразу 2 числа делителя при определении количества раз повторения в делимом.

Чтобы облегчить задачу ребёнку, который только осваивается азы деления, предложите ему ориентироваться на первые цифры у делимого и делителя. Например, 8:2=4. Пусть ребёнок подставит это число под черту и выполнит умножение. Ему нужно увидеть своими глазами, что 4 много и нужно попробовать с тройкой.

Ниже пример деления столбиком двузначного числа на двузначное с остатком.

Третий пример. Как разделить число в столбик с нулем в ответе.

Вначале делим 15 на 15, в остатке 0, в ответ 1. Сносим 6, а оно на 15 не делится, значит ставим в ответе 0. Далее, 15 умноженное на 0, будет ноль и его отнимаем от 6. Сносим ноль, что в конце числа, получаем 60, которое делится на 15 и в ответ ставим 4.

Как делить в столбик трехзначное число на однозначное, двузначное и трехзначное: примеры, объяснение

Продолжим разбор действия деления столбиком на примерах с трёхзначным делимым.

Когда делитель одноразрядное число, алгоритм действия аналогичен рассмотренным выше.

Схематически он выглядит так:

В случае деления трёхзначного делимого на двузначный делитель подберите с ребёнком число, соответствующее количеству вмещений второго в первой части первого либо в целом. То есть рассматривайте сначала 2 цифры трехзначного делимого, если они меньше делителя, тогда все три.

Когда ребёнок еще только начал освоение деления столбиком, подскажите ему совершение действий с однозначными числами. То есть с первыми в делимом и делителе. Пусть малыш совершит ошибку, которая приведет к отрицательному значению вычитания и вернётся к подбору числа под чертой, чем запутается с действием сразу для двузначного делителя.

Схема деления трехзначного на двузначное числа такая:

Трехзначные значения в делителе и делимом выглядят громоздкими и пугающими для ребёнка. Успокойте его, объяснив, что принцип действий идентичен, как и при делении простых чисел.

Метод перебора по одной цифре поможет малышу разобраться с каждым числом отдельно. Только количество времени на это действие ему потребуется больше, чем в предыдущих примерах. Для лучшего визуального восприятия объединяйте дугами количество цифр, которые будут участвовать в первом действии.

Схема деления трёхзначного на трёхзначное числа.

Как делить в столбик четырехзначные, многозначные большие числа, многочлены на многочлены: примеры, объяснение

В случае деления четырёхзначного числа на любое, которое содержит до 4 порядков одновременно, обратите внимание ребёнка на нюансы:

  • определение правильного количества порядков после действия деления. Например, в примере 6734:56 должно получится двузначное целое число в графе «частное», а в примере 8956:1243 — однозначное целое,
  • появление нулей в частном. Когда в ходе решения при переносе следующего числа делимого результат оказывается меньше делителя,
  • проверку полученного результата посредством выполнения действия умножения. Этот нюанс актуален для деления больших чисел без остатка. Если последний присутствует, то советуйте ребёнку проверить себя и ещё раз разделить числа в столбик.

Ниже пример решения.

Для больших многозначных чисел, которые делятся на конкретные значения меньше или равные им по количеству знаков, актуальны все алгоритмы, рассмотренные выше.

Ребёнку следует быть особенно внимательным в таких случаях и правильно определять:

  • количество знаков у частного, то есть результата
  • цифры у делимого для первого действия
  • правильность переноса остальных чисел

Примеры подробного решения ниже.

При совершении действия деления над многочленами обращайте внимание детей на ряд особенностей:

  • у действия может быть остаток либо отсутствовать. В первом случае запишите его в числителе, а делитель в знаменателе,
  • для совершения действия вычитания дописывайте в многочлен недостающие степени функции, умноженные на ноль,
  • совершайте преобразование многочленов путём выделения повторяющихся дву-/многочленов. Тогда их сократите и получится результат без остатка.

Ниже ряд подробных примеров с решениями.

Как делить в столбик с остатком?

Алгоритм деления в столбик с остатком аналогичен классическому. Разница лишь в появлении остатка, который меньше делителя. А значит первый остаётся без изменения.

Запишите его в ответе либо:

  • как дробь, где в числителе остаток, а в знаменателе — делитель
  • словами, например, 73 целых и 6 в остатке

Как делить столбиком десятичные дроби с запятой?

Существует несколько особенностей при подобном делении. Если вы совершаете действие с:

  • десятичной дробью-делимым и целым числом-делителем, то действуйте по обычному алгоритму до тех пора, пока закончатся цифры у делимого перед запятой. Затем поставьте её в частном и продолжайте переносить цифры до окончания деления,
  • числом, которое делится на 10, 100, 100 и т.д., то перенесите запятую в делимом влево на количество цифр, равное количеству нулей делителя. Например, 749,5:100=7,495,
  • десятичными дробями одновременно и в делителе, и в делимом, то сначала избавьтесь от запятой у второго элемента. Для этого перенесите её вправо в обоих дробных числах на то количество знаков, которые отделены у делителя. Например, 416,788:5,3 преобразуйте в 4167,88:53 и совершите обычное деление в столбик.

Как делить столбиком меньшее число на большее?

При таком делении у вас частное будет начинаться с 0 и иметь после него запятую.

Чтобы ребёнок лучше усвоил подобное деление и не запутался в количестве нулей, месте постановки запятой в частном, дайте ему такой пример:

  • первое действие на вычитание проведите с нулями, записанными по одному под делителем и в графе «частное»,
  • поставьте запятую в частном, а остатка после разницы добавьте ноль и продолжайте обычное деление в столбик,
  • когда остаток от вычитания опять будет меньше делителя, допишите первому ноль и продолжайте действие. Финальный итог — получение ноля от разницы верхнего и нижнего чисел либо повторения остатка. В последнем случае присутствует значение в периоде, то есть бесконечно повторяющееся число/числа.

Ниже пример.

Как делить столбиком числа с нулями?

Последовательность и алгоритм действий аналогичен классическому, рассмотренному в первом разделе.

Из нюансов отметим:

  • при наличии нулей в конце делителя и делимого смело сокращайте их. Предложите ребёнку зачеркнуть их карандашом и продолжить деление как обычно. Например, в ситуации 1200:400 ребёнок может убрать оба нуля у обоих чисел, но в ситуации 15600:560 — только по одному крайнему,
  • если ноль есть только в делителе, то подбирайте первую цифру для действия, ориентируясь на число перед ним. Например, в примере 6537:70 поставьте 9 в частное первым числом. Для данного примера совершайте умножение на обе цифры делителя и подписывайте их под тремя у делимого.

Когда нулей у делимого много и процесс деления закончился до того, как вы их все использовали, то перенесите их в частное после цифр, которые образовались до этого. Пример, 1000:2=500 — вы перенесли два последних нуля.

Итак, мы рассмотрели основные ситуации деления чисел разного количества разрядности в столбик, определили алгоритм действия и акценты для обучения ребёнка.

Практикуйте полученные знания и помогайте своему чаду осваивать математику.

Видео: как правильно делить числа в столбик?

Как научиться делить в столбик

Процесс деления в столбик заключается в последовательном выполнении элементарных арифметических действий. Для того, чтобы научиться делить в столбик, нужно просто потренироваться в этом несколько раз. Алгоритм деления в столбик рассмотрим на следующих примерах — делим в столбик целые числа без остатка, с остатком и дробные числа, представленные в виде десятичной дроби.

Вам понадобится

  • — ручка или карандаш,
  • — лист бумаги в клетку.

Руководство по эксплуатации

1

Деление без остатка. Разделите 1265 на 55.

Проведите вниз по короткой вертикальной линии высотой в несколько ячеек. От этой линии провести перпендикуляр вправо. В результате получается буква «Т», замусоренная с левой стороны. Над горизонтальной частью залитой буквы «Т» пишется делитель (55), а слева от него в той же строке, за вертикальной частью буквы «Т» — делимое (1265). Обычно первым пишется делимое, затем в столбце ставится знак деления (буква «Т» завалена в одну сторону), а затем делитель.

2

Определить, какая часть делимого (счет идет слева направо по старшинству цифр) делится на делитель. То есть: 1 на 55 — нет, 12 на 55 — нет, 126 на 55 — да. Число 126 называют неполной кратностью.

3

Прикиньте в уме, на какое число N нужно умножить делитель, чтобы получить число, равное или максимально близкое (но не более) к значению неполного делимого. То есть: 1*55 — мало, 3*55=165 — слишком много.Итак, наш выбор — цифра 2. Пишем ее под разделителем (ниже горизонтальной части замусоренной буквы «Т»).

4

Умножить 2 на 55 и полученное число 110 записать строго под цифрами неполного делимого — слева направо: 1 под 1, 1 под 2 и 0 под 6. Верх 126, низ 110. Под 110 провести короткую горизонтальную черту

5

Из 126 вычесть число 110. Получится 16. Цифры писать четко друг под другом под чертой.То есть слева направо: под цифрой 1 число 110 пусто, под цифрой 1 — 1 и под цифрой 0 — 6. Число 16 — это остаток, который должен быть меньше делителя. Если он оказался больше делителя, число N было выбрано неправильно — нужно его увеличить и повторить предыдущие действия.

6

Берем следующую цифру делимого (число 5) и записываем ее справа от числа 16. Получается 165.

7

Повторите третий шаг для отношения 165 к 55, то есть найдите число Q, при умножении делителя на которое получается число максимально близкое к 165 (но не больше его).Это число 3 — 165 делится на 55 без остатка. Запишите цифру 3 справа от цифры 2 под чертой, проведенной под разделителем. Вот ответ: конкретное отношение 1265 к 55 равно 23.

8

Отдел с остатком. Разделите 1276 на 55. Повторите те же действия, что и при делении без остатка. Число N по-прежнему равно 2, но разница между 127 и 110 равна 17. Отнимаем 6 и определяем число Q. Оно тоже по-прежнему равно 3, но теперь появляется остаток: 176 — 165 = 11.Остаток 11 меньше 55, вроде все нормально. Но больше терпеть нечего

.

9

Справа от делимого прибавить ноль и поставить запятую после числа 3 в частном (число, полученное при делении, записывается под чертой, проведенной под делителем).

10

Возьмите ноль в делимом (запишите его справа от 11) и проверьте, можно ли полученное число разделить на делитель. Ответ положительный: 2 (обозначим его как число G) умножить на 55 — это 110.Ответ 23,2. Если бы дрейфа на предыдущем шаге было недостаточно для того, чтобы остаток с добавленным нулем был больше делителя, необходимо было бы добавить еще один ноль к делимому и поставить 0 в частном после запятой (это было бы 23.0 …).

одиннадцать

Деление десятичных знаков в столбце. Переместите запятую на одинаковое количество знаков вправо в делителе и делителе так, чтобы там и там стояли целые числа. Далее — алгоритм деления тот же.

примечание

Пишите все числа строго друг под другом согласно изложенным рекомендациям – это не даст возможности ошибиться при расчетах.

Сложение, вычитание, умножение и деление десятичных дробей.

Деление в столбик. Как правильно объяснить ребенку деление в столбик Как решить деление 244 6

Одним из важных этапов обучения ребенка математическим действиям является обучение операции деления простых чисел.Как объяснить ребенку деление, когда можно начинать осваивать эту тему?

Для того чтобы научить ребенка делить, необходимо, чтобы к моменту обучения он уже освоил такие математические операции, как сложение, вычитание, а также имел четкое представление о самой сути операций умножения и деления . То есть он должен понять, что деление — это деление чего-либо на равные части. Также необходимо учить операции умножения и учить таблицу умножения.

Я уже писал о том, чем эта статья может быть вам полезна.

Осваиваем операцию деления (деления) на части в игровой форме

На этом этапе необходимо сформировать у ребенка понимание, что деление есть деление чего-либо на равные части. Самый простой способ научить ребенка этому – предложить ему поделиться определенным количеством предметов со своими друзьями или членами семьи.

Например, возьмите 8 одинаковых кубиков и предложите ребенку разделить на две равные части — для себя и другого человека.Варьируйте и усложняйте задание, предложите ребенку разделить 8 кубиков не на двоих, а на четверых человек. Проанализируйте результат вместе с ним. Измените компоненты, попробуйте с другим количеством предметов и людей, на которые эти предметы нужно разделить.

Важно: Следите за тем, чтобы сначала ребенок оперировал с четным числом предметов, чтобы в результате деления получилось одинаковое количество частей. Это пригодится на следующем этапе, когда ребенку нужно будет понять, что деление — это действие, обратное умножению.

Умножение и деление с использованием таблицы умножения

Объясните ребенку, что в математике противоположное умножению называется делением. Используя таблицу умножения, продемонстрируйте учащемуся на любом примере связь между умножением и делением.

Пример: 4×2=8. Напомните ребенку, что результатом умножения является произведение двух чисел. Затем объясните, что деление — это действие, обратное умножению, и ясно проиллюстрируйте это.

Разделите полученное произведение «8» из примера — на любой из множителей — «2» или «4», и в результате всегда будет другой множитель, который не использовался в операции.

Также нужно научить юного школьника тому, как называются категории, описывающие операцию деления – «делимое», «делитель» и «частное». На примере покажите, какие числа являются делителями, делителями и частными. Закрепите эти знания, они необходимы для дальнейшего обучения!

На самом деле вам нужно учить ребенка таблице умножения «наоборот», и вам нужно выучить ее так же, как и саму таблицу умножения, потому что это будет необходимо, когда вы начнете учить деление в столбик.

Разделить столбиком — привести пример

Перед началом урока вспомните с ребенком, как называются цифры при операции деления. Что такое «делитель», «делимое», «частное»? Научитесь точно и быстро определять эти категории. Это будет очень полезно при обучении ребенка делить простые числа.

Мы понятно объясняем

Разделим 938 на 7. В данном примере 938 — делимое, 7 — делитель. Результатом будет частное, а затем его нужно вычислить.

Шаг 1 . Записываем цифры, разделяя их «уголком».

Шаг 2 Покажите ученику числа делимых и попросите его выбрать из них наименьшее число, которое больше делителя. Из трех чисел 9, 3 и 8 это число будет 9. Предложите ребенку проанализировать, сколько раз число 7 может содержаться в числе 9? Правильно, только один раз. Следовательно, первый результат, который мы запишем, будет 1.

.

Шаг 3 Перейдем к оформлению деления столбиком:

Умножаем делитель 7х1 и получаем 7.Полученный результат записываем под первым числом нашего делимого 938 и вычитаем, как обычно, в столбик. То есть из 9 вычитаем 7 и получаем 2.

Записываем результат.

Шаг 4 Число, которое мы видим, меньше делителя, поэтому нам нужно его увеличить. Для этого объединяем его со следующим неиспользованным числом нашего делимого — это будет 3. К полученному числу 2 приписываем 3.

Шаг 5 Далее действуем по уже известному алгоритму.Давайте проанализируем, сколько раз наш делитель 7 содержится в получившемся числе 23? Правильно, три раза. Зафиксируем число 3 в частном. А результат произведения — 21 (7*3) записывается ниже под цифрой 23 в столбик.

Шаг 6 Теперь осталось найти последнее число нашего частного. По уже знакомому алгоритму продолжаем делать расчеты в столбик. Вычитая в столбце (23-21) получаем разницу. Это равно 2.

Из делимого у нас осталось неиспользованным одно число — 8.Совмещаем его с числом 2, полученным в результате вычитания, получаем — 28.

Шаг 7 Проанализируем, сколько раз наш делитель 7 содержится в полученном числе? Правильно, 4 раза. Записываем полученную цифру в результат. Итак, имеем полученное в результате деления столбиком частное = 134.

Как научить ребенка делить — закрепляем навык

Основная причина, по которой у многих школьников возникают проблемы с математикой, — неумение быстро производить простые арифметические вычисления.И на этой основе вся математика строится в начальной школе. Особенно часто проблема в умножении и делении.
Для того чтобы ребенок научился быстро и качественно производить вычисления с делением в уме, необходима правильная методика обучения и закрепление навыка. Для этого советуем воспользоваться популярными на данный момент пособиями по освоению навыка дивизии. Одни предназначены для занятий детей с родителями, другие – для самостоятельной работы.

  1. «Отдел. Рабочая тетрадь 3 уровня» от крупнейшего международного центра дополнительного образования Kumon
  2. «Дивизия. Рабочая тетрадь 4 уровня, Кумон
  3. «Не ментальная арифметика. Система обучения ребенка быстрому умножению и делению. На 21 день. Симулятор блокнота.» от Ш. Ахмадулин — автор бестселлеров познавательной литературы

Самое главное при обучении ребенка делить в столбик — это усвоить алгоритм, который, в общем-то, достаточно прост.

Если ребенок хорошо оперирует таблицей умножения и «обратным» делением, у него не возникнет трудностей. Тем не менее очень важно постоянно тренировать приобретенный навык. Не останавливайтесь на достигнутом, как только поймете, что ребенок понял суть метода.

Для того, чтобы легко обучить ребенка действию деления, нужно:

  • Чтобы в возрасте двух-трех лет он освоил отношения «целое — часть». У него должно развиться понимание целого как неотделимой категории и восприятие отдельной части целого как самостоятельного объекта.Например, игрушечный грузовик — это целое, а его кузов, колеса, двери — части этого целого.
  • Чтобы в младшем школьном возрасте ребенок свободно оперировал сложением и вычитанием чисел, понимал сущность процессов умножения и деления.

Чтобы ребенку нравилась математика, необходимо вызвать у него интерес к математике и математическим действиям не только во время обучения, но и в бытовых ситуациях.

Поэтому поощряйте и развивайте в ребенке наблюдательность, проводите аналогии с математическими операциями (операции по счету и делению, анализ отношений часть-целое и т.) при строительстве, играх и наблюдениях за природой.

Преподаватель, специалист центра детского развития
Дружинина Елена
сайт специально для проекта

Видео заговор для родителей, как правильно объяснить ребенку деление на столбик:

Для деления чисел из двух и более цифр (символов) используйте деление на столбец .

По традиции разберемся, как делить на столбик, на примере.

Рассчитать:

Сначала запишите делимое и делитель в столбик. Это будет выглядеть так:

Их частное (результат) будет записано под делителем. У нас есть цифра «8».

Начинаем делить «512» на «8» следующим образом:

  1. Определим неполное частное . Для этого слева направо сравниваем числа делимого и делителя.

    Берем «5». Число «5» меньше «8», поэтому от делимого нужно отнять еще одну цифру.

  2. «51» больше, чем «8». Так что это неполное частное. Ставим точку в частном (под углом делителя).

    Помните!

    Во избежание ошибок не забудьте указать количество цифр в частном.

    Для этого посчитаем, сколько цифр осталось в делимом после неполного частного. У нас есть только одна цифра после «51» «2». Таким образом, мы добавляем еще один балл к результату.

  3. Начнем делить.Вспоминая таблицу умножения на «8 », находим произведение, наиболее близкое к «51 ».
    «6 8 = 48»
    Запишем число «6» в частное.

    Под «51» пишем «48».

    Помните!

    При записи под неполным частным крайняя правая цифра неполного частного должна быть выше самой правой цифры произведения.

    Между «51» и «48» слева ставим «-» (минус). Вычтите по правилам вычитания в столбце «48» и запишите результат под чертой.

  4. Остаток равен «3». Сравните остаток с делителем. «3» меньше «8».

Деление — одно из четырех основных математических действий (сложение, вычитание, умножение). Деление, как и другие операции, имеет важное значение не только в математике, но и в повседневной жизни. Например, вы сдадите деньги всем классом (25 человек) и купите подарок учителю, но все не потратите, будет сдача. Таким образом, вам придется разделить изменение между всеми.Операция деления вступает в игру, чтобы помочь вам решить эту проблему.

Деление — интересная операция, в чем мы с вами и убедимся в этой статье!

Числовое деление

Итак, немного теории, а потом практика! Что такое деление? Деление – это разбиение чего-либо на равные части. То есть это может быть упаковка конфет, которую нужно разделить на равные части. Например, в мешочке 9 конфет, а у того, кто хочет их получить, их три.Затем нужно разделить эти 9 конфет на троих.

Записывается так: 9:3, ответом будет число 3. То есть деление числа 9 на число 3 показывает количество цифр три, содержащихся в числе 9. Обратное действие, тест, будет умножение. 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Во-первых, давайте назовем каждый компонент примера. 12 — делимый, т.е. число, которое делится. 6 — делитель, это количество частей, на которые делится делимое.И в результате получится номер под названием «частный».

Разделите 12 на 6, ответом будет число 2. Решение можно проверить умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что такое деление с остатком? Это то же самое деление, только в результате получается нечетное число, как показано выше.

Например, давайте разделим 17 на 5. Поскольку наибольшее число, которое делится от 5 до 17, равно 15, ответ равен 3, а остаток равен 2, и записывается так: 17:5=3(2).

Например, 22:7. Таким же образом определяем максимальное число, которое делится на 7 до 22. Это число равно 21. Тогда ответ будет: 3 и остаток 1. И написано: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делится ли число на 3 или на 9 без остатка, то вам потребуется:

    Найдите сумму цифр делимого.

    Разделите на 3 или 9 (в зависимости от того, что вам нужно).

    Если ответ получен без остатка, то число будет делиться без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится и на 3, и на 9. Число 18:9=2, 18:3=6. Разделены без следа.

Например, число 63. Сумма цифр 6+3 = 9. Делится и на 9, и на 3. 63:9=7, а 63:3=21. Такие операции проводятся с любым числом, чтобы узнать, делится ли оно с остатком на 3 или 9 или нет.

Умножение и деление

Умножение и деление — противоположные операции. Умножение можно использовать как тест на деление, а деление как тест на умножение. Вы можете узнать больше об умножении и освоить операцию в нашей статье об умножении. В котором подробно описано умножение и как правильно его выполнять. Там же вы найдете таблицу умножения и примеры для обучения.

Вот пример проверки деления и умножения.Допустим, пример 6*4. Ответ: 24. Тогда проверим ответ по делению: 24:4=6, 24:6=4. Правильно решил. В этом случае проверка производится путем деления ответа на один из множителей.

Или приведен пример деления 56:8. Ответ: 7. Тогда тест будет 8*7=56. Верно? да. В этом случае проверка производится путем умножения ответа на делитель.

Дивизия 3 класс

В третьем классе только начинает проходить дивизия. Поэтому третьеклассники решают простейшие задачи:

Задание 1 .Работнику фабрики дали задание разложить 56 тортов по 8 упаковкам. Сколько пирожных нужно положить в каждый пакет, чтобы в каждом было одинаковое количество?

Задача 2 . В канун Нового года школа раздала 75 сладостей детям класса из 15 учеников. Сколько конфет должен получить каждый ребенок?

Задача 3 . Рома, Саша и Миша сорвали с яблони 27 яблок. Сколько яблок достанется каждому, если их нужно разделить поровну?

Задача 4 .Четверо друзей купили 58 печений. Но потом поняли, что не могут разделить их поровну. Сколько печенья нужно купить каждому ребенку, чтобы получить 15 печений?

Дивизия 4 класса

Дивизия в четвертом классе более серьезная, чем в третьем. Все расчеты ведутся путем деления в столбик, причем числа, которые участвуют в делении, не маленькие. Что такое деление на столбик? Ответ вы найдете ниже:

Длинное деление

Что такое деление на столбик? Это метод, который позволяет найти ответ на деление больших чисел.Если простые числа, такие как 16 и 4, можно разделить, то и ответ ясен — 4. Вот 512:8 в уме ребенку нелегко. И рассказать о технике решения таких примеров — наша задача.

Рассмотрим пример 512:8.

1 шаг . Делимое и делитель запишем так:

Частное в результате будет записано под делителем, а вычисления под делимым.

2 шаг .Деление начинается слева направо. Сначала возьмем номер 5.

3 шага . Число 5 меньше числа 8, а значит, делить не получится. Поэтому возьмем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг . Ставим точку под разделителем.

5 шаг . После 51 идет еще одна цифра 2, а это значит, что в ответе будет еще одна цифра, т.е.частный — двузначный номер. Ставим вторую точку:

6 шаг . Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 — 48. Разделив 48 на 8, получим 6. Запишем цифру 6 вместо первой точки под делителем:

7 шаг . Затем записываем число ровно под цифрой 51 и ставим знак «-»:

8 шаг . Затем из 51 вычтите 48 и получите ответ 3.

*9 шаг *. Сносим цифру 2 и пишем рядом с цифрой 3:

10 шаг Полученное число 32 делим на 8 и получаем вторую цифру ответа — 4.

Итак, ответ такой 64, без следа. Если бы мы разделили число 513, то в остатке была бы единица.

Трехзначное деление

Деление трехзначных чисел выполняется методом деления в большую сторону, который был объяснен на примере выше.Пример точно такого же трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод деления довольно прост. 2/3 делимое, 1/4 делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3) (4/1), (2/3)*4, это равно — 8/3 или 2 целых числа и 2/3.Приведем еще один пример, с иллюстрацией для лучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, мы переворачиваем делитель 2/5 и получаем 5/2, заменяя деление умножением. Получаем тогда (4/7)*(5/2). Делаем сокращение и отвечаем: 10/7, затем выносим целую часть: 1 целую и 3/7.

Деление числа на классы

Представим себе число 148951784296 и разделим его на три цифры: 148 951 784 296. Итак, справа налево: 296 — класс единиц, 784 — класс тысяч, 951 — класс миллионов, 148 — класс миллиардов.В свою очередь, в каждом классе 3 цифры имеют свою категорию. Справа налево: первая цифра — единицы, вторая цифра — десятки, третья — сотни. Например, класс единиц — 296, 6 — единицы, 9 — десятки, 2 — сотни.

Деление натуральных чисел

Деление натуральных чисел — это самое простое деление, описанное в этой статье. Может быть как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс «Ускорьте счет в уме, а НЕ арифметику в уме», чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить в квадрат числа и даже извлекать корни. За 30 дней вы научитесь использовать простые приемы для упрощения арифметических операций. Каждый урок содержит новые приемы, наглядные примеры и полезные задания.

Презентация деления

Презентация – это еще один способ наглядно показать тему деления. Ниже мы найдем ссылку на отличную презентацию, в которой хорошо объясняется, как делить, что такое деление, что такое делимое, делитель и частное.Не теряйте время и закрепляйте свои знания!

Примеры разделов

Легкий уровень

Средний уровень

Сложный уровень

Игры на развитие устного счета

Специальные развивающие игры, разработанные при участии российских ученых из Сколково, помогут улучшить навыки устного счета в интересной игровой форме .

Игра «Угадай операцию»

Игра «Угадай операцию» развивает мышление и память.Основная суть игры, вам нужно выбрать математический знак, чтобы равенство было правдой. Примеры даны на экране, смотрите внимательно и ставьте нужный знак «+» или «-», чтобы равенство было верным. Знаки «+» и «-» расположены внизу картинки, выберите нужный знак и нажмите на нужную кнопку. Если вы отвечаете правильно, вы получаете очки и продолжаете играть.

Игра «Упрости»

Игра «Упрости» развивает мышление и память. Основная суть игры заключается в быстром выполнении математической операции.На экране у доски рисуется учащийся и дается математическое действие, учащемуся необходимо посчитать этот пример и написать ответ. Ниже три ответа, посчитайте и кликните мышкой нужное вам число. Если вы отвечаете правильно, вы получаете очки и продолжаете играть.

Игра «Быстрое сложение»

Игра «Быстрое сложение» развивает мышление и память. Суть игры заключается в выборе чисел, сумма которых равна заданному числу.В этой игре задана матрица от одного до шестнадцати. Над матрицей написано заданное число, необходимо подобрать числа в матрице так, чтобы сумма этих чисел была равна заданному числу. Если вы отвечаете правильно, вы получаете очки и продолжаете играть.

Игра «Наглядная геометрия»

Игра «Наглядная геометрия» развивает мышление и память. Основная суть игры заключается в том, чтобы быстро подсчитать количество заштрихованных объектов и выбрать его из списка ответов.В этой игре на экране на несколько секунд показываются синие квадраты, их нужно быстро сосчитать, после чего они закрываются. Под таблицей написаны четыре числа, необходимо выбрать одно правильное число и нажать на него мышкой. Если вы отвечаете правильно, вы получаете очки и продолжаете играть.

Игра «Копилка»

Игра «Копилка» развивает мышление и память. Основная суть игры заключается в том, чтобы выбрать в какой копилке больше денег. В этой игре дано четыре копилки, нужно посчитать в какой копилке больше денег и показать эту копилку мышкой.Если вы отвечаете правильно, то набираете очки и продолжаете играть дальше.

Игра «Быстрая перезагрузка сложения»

Игра «Быстрая перезагрузка сложения» развивает мышление, память и внимание. Основная суть игры состоит в том, чтобы правильно подобрать условия, сумма которых будет равна заданному числу. В этой игре на экране дается три числа и дается задание, прибавь число, на экране указано какое число добавить. Вы выбираете из трех цифр нужные цифры и нажимаете их.Если вы отвечаете правильно, то набираете очки и продолжаете играть дальше.

Развитие феноменальной ментальной арифметики

Мы рассмотрели только верхушку айсберга, чтобы лучше понять математику — записывайтесь на наш курс: Ускорьте ментальный счет — НЕ ментальную арифметику.

Из курса вы не только научитесь десяткам приемов упрощенного и быстрого умножения, сложения, умножения, деления, расчета процентов, но и отработаете их в специальных заданиях и обучающих играх! Умственный счет также требует большого внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. От 150-200 до 300-600 слов в минуту или от 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, приемы, ускоряющие работу головного мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит для детей и взрослых, читающих до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса — развить память и внимание ребенка, чтобы ему было легче учиться в школе, чтобы он лучше запоминал.

После прохождения курса ребенок сможет:

  1. В 2-5 раз лучше запоминать тексты, лица, цифры, слова
  2. Мозг, как и тело, нуждается в упражнениях. Физические упражнения укрепляют тело, умственные развивают мозг.30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

    Деньги и мышление миллионера

    Почему возникают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши отношения с деньгами с психологической, экономической и эмоциональной точек зрения. Из курса вы узнаете, что вам нужно сделать, чтобы решить все ваши проблемы.финансовые трудности, начинайте копить деньги и вкладывать их в будущее.

    Знание психологии денег и умение с ними работать делает человека миллионером. 80% людей с ростом доходов берут больше кредитов, становясь еще беднее. С другой стороны, миллионеры, заработавшие деньги самостоятельно, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит правильному распределению доходов и сокращению расходов, мотивирует к обучению и достижению целей, учит вкладывать деньги и распознавать лохотрон.

‎Раздел столбца в App Store

Это математическое приложение можно использовать для обучения и изучения метода деления столбиком. Приложение простое в использовании и имеет интуитивно понятный интерактивный интерфейс с настраиваемыми цветами и другими настройками. Пользователь может решать задачи случайного деления.

Метод деления по столбцам

Метод деления по столбцам представляет собой простой вариант традиционного метода деления по столбцам. Линии рисуются для разделения цифр делителя.Каждый столбец разрядных значений решается слева направо.

В программе «Повседневная математика» метод деления на столбцы является одним из алгоритмов деления.

Одобрено учителями

Рита Зени, Начальная школа Ecole Sandy Hill, Абботсфорд, Британская Колумбия, Канада:

«Математические приложения от Эсы Хелттулы позволяют учащимся практиковать и закреплять определенные вычислительные стратегии, преподаваемые в классе, с одинаковыми или меньшими затратами строительные леса по мере необходимости
Они также обеспечивают индивидуальную обратную связь с каждым учащимся с оперативностью, которая не всегда возможна при использовании карандаша и бумаги.Возможность регулировать уровень сложности в соответствии со своими потребностями также очень мотивирует учащихся. Я так рад, что наткнулся на этот замечательный образовательный инструмент!»

Приложение простое в использовании

Числа выравниваются автоматически, чтобы пользователь мог сосредоточиться на решении операций для каждого столбца.

После того, как вы решите операцию для каждого неполного произведения правильный ответ прилетит в нужное место, если нажать не ту кнопку, то ответ появится над клавиатурой, но не сдвинется с места.

Настройки:

— Делимое может иметь от 2 до 5 цифр
— Делитель может иметь 1 или 2 цифры
— Пользовательские и случайные задачи
— Текущая операция может быть скрыта
— Операнды текущей операции могут быть скрыты выделено
— Можно изменить цвета интерфейса
— Можно установить скорость анимации

Другие математические приложения iDevBooks

Математические приложения iDevBooks проверены и одобрены Wired.com, IEAR.org, Edudemic.com, учителями с Apps и другими уважаемыми сайтами и организациями.

Некоторые из других 40 математических приложений iDevBooks: сложение столбцов, длинное умножение, длинное деление, вычитание столбцов, умножение решеток, таблица визуального умножения, вычитание частичных разностей, деление частичных частных, сложение частичных сумм, десятичное округление и т. д.

Обратная связь и запросы на новые функции

Приветствуются новые идеи по улучшению этого приложения. Пожалуйста, посетите idevbooks.com, чтобы оставить отзыв.

Конфиденциальность

В этом приложении нет рекламы или встроенных покупок, и оно не передает никаких данных во время работы приложения.Это приложение также не содержит ссылок на другие приложения или в Интернете.

Объяснение короткого участка (метод автобусной остановки) и длинного участка

Мы работали с экспертами по математике в начальной школе, чтобы создать руководство для родителей по краткому делению (включая метод автобусной остановки) и страшному длинному делению.

Здесь мы объяснили все, что вам нужно знать, чтобы помочь вашему ребенку разобраться с этими сложными темами!

Неважно, короткое это или длинное деление, у многих детей и их родителей простое упоминание о работе на букву «Д» может вызвать мурашки по спине у многих юных математиков, но это не обязательно. дело!

Здесь, в Third Space Learning, мы стремимся сделать математику доступной для всех, включая и краткое, и длинное деление…

В прошлом делению обучали без особого моделирования (с использованием физических предметов для облегчения представления математической задачи), поэтому неудивительно, что многим из нас, родителей, это трудно и по сей день.

Однако в настоящее время, когда дети проводят много времени в школе, понимая , как работает деление , а не просто запоминая метод, страх перед делением KS2 тает, но подведение итогов и помощь ребенку в выполнении деления дома сделает большая разница

Но прежде чем вы узнаете все, что вам нужно знать о дивизионах для детей, мы подготовили для вас краткий обзор дивизий!

Этот блог является частью нашей серии блогов, предназначенных для учителей, школ и родителей, поддерживающих обучение дома.

Рабочие листы длинной части для 3-6 классов

Этот БЕСПЛАТНЫЙ ресурс содержит 3 готовых к использованию рабочих листа для вашего класса, которые помогут им со всеми аспектами деления в большую сторону, от однозначных чисел до вычисления кратных!


Методы деления в двух словах

Мы знаем, как чертовски сложно деление может быть как для вас, так и для вашего ребенка, поэтому давайте начнем с некоторых определений и резюме того, что вы, возможно, забыли со школы.

Что такое деление в математике?

Деление — это операция, обратная умножению и заключающаяся в разбиении на равные части или группы.

В начальной школе преподаются 3 метода деления, каждый из которых различается по сложности. Они:

  • Разбиение на части
  • Короткое деление (также известное как метод автобусной остановки)
  • Длинное деление
Что такое разбивка?

Разбиение на части — это метод, который используется для деления больших чисел, которые невозможно разделить в уме.

При использовании метода фрагментации дети будут многократно вычитать делитель из делимого, пока не будет получен ответ. Например, 12 ÷  3 можно решить, выполнив 12–3, чтобы получить 9, 9–3, чтобы получить 6, 6–3, чтобы получить 3, а затем 3–3, чтобы получить 0.

Когда все случаи, когда 3 вычитаются из 12, подсчитываются (4), становится ясно, что ответ равен 4.

Что такое короткое деление?

Короткое деление — это быстрый и эффективный метод деления больших чисел.

После того, как ваш ребенок освоится с делением на фрагменты, он перейдет к короткому делению, так как его можно использовать для решения задачи на деление с очень большим делимым, выполнив ряд простых шагов.

Например:

В этом примере четыре дважды входит в число девять, а в остатке остается единица.

Этот остаток затем передается следующему числу (шесть), чтобы получилось 16. Четыре входит в число 16 четыре раза, так что при суммировании получается 24.

Какой метод автобусной остановки?

Метод деления на автобусной остановке — это просто другое название для краткого деления. Он получил свое название от идеи, что делимое (число, которое вы хотите разделить) находится внутри автобусной остановки, а делитель ждет снаружи.

Учителя расходятся во мнениях относительно того, действительно ли это изображение полезно при изучении деления, поэтому в большинстве случаев мы просто будем называть его коротким делением.

Что такое длинное деление?

Длинное деление — это метод, который используется при делении большого числа (обычно трех или более цифр) на двузначное (или большее) число.Он изложен аналогично методу автобусной остановки, который используется для короткого деления.

Взгляните на наш пример ниже, чтобы увидеть, как деление в длину объясняется наглядным примером.

Лучше всего это объяснить на примере – см. ниже.

У нас есть очень подробная статья, написанная для учителей по этому предмету, которая может вам понравиться, если вы хотите более подробно изучить метод длинного деления в KS2.

Терминология, которую необходимо знать при обучении разделу

В наших родительских блогах мы стараемся избегать слишком большого количества жаргона, но следующие три термина действительно важны для всех, кто изучает деление.

  • Делимое — это число, которое вы делите (число внутри «автобусной остановки»
  • Делитель — это число, на которое вы делите.
  • Частное — это сумма, которую получает каждый делитель, т. в большинстве случаев.
    Части задачи на деление, помеченные для детей и родителей

    Изучив правильный словарный запас всех частей задачи на деление, ваш ребенок найдет многие элементы деления намного проще.

    Что нужно знать моему ребенку о коротком и длинном делении в KS1 и KS2?

    В связи с тем, что дети меняются из года в год на протяжении всей начальной школы, краткое и длинное деление позволяет многое осветить в блоге, но чтобы помочь вам, мы разбили его по годам.

    Отдел 1-го года : как вы можете помочь

    В 1-м году деление обычно называется разделением и осуществляется с помощью конкретных предметов, таких как жетоны, кубики или даже продукты питания, такие как макароны.

    Это помогает детям понять разделение как разделение между группами.

    Простой пример этого можно найти ниже.

    Некоторые простые задачи на деление 1-го года

    Возьмите набор кубиков и помогите ребенку решить эти задачи на деление.

    Убедитесь, что вы не забыли использовать такие слова, как разделить и разделить , чтобы ваш ребенок познакомился с понятиями.

    Начните с 4 блоков. Разделите их на 2 группы одинакового размера.

    Начните с 10 блоков. Разделите их на 2 группы одинакового размера.

    Начните с 6 блоков. Разделите их на 3 группы одинакового размера.

    Подразделение 2 года : как вы можете помочь

    Во втором классе дети начинают глубже смотреть на то, как работает деление, а это значит, что вашему ребенку есть чему поучиться.

    Ключевой концепцией, которую нужно понять и действительно освоить в этом возрасте, является коммутативность .

    Если вы изо всех сил пытаетесь вспомнить, что именно означает коммутативность, определение простое.

    В математике коммутативное свойство утверждает, что порядок не имеет значения.

    Умножение коммутативное ; вы можете поменять местами числа, и это не имеет значения.

    2 х 3 = 6

    3 х 2 = 6

    Деление не является коммутативным .Если вы поменяете порядок чисел, это изменит ответ.

    4 ÷ 2 = 2

    2 ÷ 4 = 0,5

    Деление и коммутативность во 2-м году

    В этом возрасте хорошо практиковаться в изучении таблиц умножения на 2, 5 и 10 с соответствующими фактами деления. Например:

    Факт умножения:

    2 х 5 = 10

    Соответствующие факты деления:

    10 ÷ 5 = 2

    10 ÷ 2 = 5

    Знание этих фактов значительно облегчит дальнейшее деление, и они являются прекрасным примером того, почему коммутативность важна.

    Если вашего ребенка устраивает разница между 10 ÷ 5 и 10 ÷ 2, даже после того, как он увидит, что 5 x 2 совпадает с 2 x 5, он будет лучше подготовлен для комфортного перехода к короткому дивизиону KS2 и длинному дивизиону KS2. .

    Отдел 3 года : как вы можете помочь

    В 3-м классе ваш ребенок сосредоточится на записи вычислений деления и решении простых задач на деление, связанных с пропущенными числами.

    Здесь очень пригодится знание фактов умножения и деления, поэтому, как и в случае со 2-м классом, очень важно, чтобы вы практиковали их со своим ребенком.

    Эта проблема с пропущенными числами поможет вам понять, почему знание таблицы умножения значительно упрощает деление:

    5 х 4 = 20

    __ ÷ 5 = 4

    20 ÷ __ = 5

    В этом возрасте вводятся также два письменных метода деления, которые описаны ниже.

    Письменные методики деления для детей

    Объяснение метода разделения на фрагменты

    Хотя этот метод немного медленнее, чем деление на автобусную остановку, он отлично подходит для развития умственных навыков, необходимых детям для более сложного деления в дальнейшем.

    Как сделать фрагментацию метод деления

    Фрагментирование — это когда вы определяете, сколько раз одно число вписывается в другое число.

    Вы вычисляете это, многократно вычитая делитель (или кратные делителю), пока не дойдете до нуля, чтобы увидеть, сколько раз делитель может войти в число, которое вы делите (делимое).

    Разделение на фрагменты — это хороший способ познакомить вашего ребенка с некоторыми из основных понятий деления, и как только они с этим смирятся, они смогут перейти к методу краткого деления.

    Объяснение метода короткого деления или метода деления на автобусной остановке

    Часто называемый методом автобусной остановки из-за того, что расчет на листе бумаги имеет некоторое визуальное сходство с автобусной остановкой. Этот метод короткого деления KS2 является одним из самых популярных методов, которым обучают в школах.

    Этот метод быстрее, чем фрагментация, но важно, чтобы дети понимали, что они делают (а не просто следовали методу).

    Это значительно облегчит деление на длинные числа в будущем, но рекомендуется убедиться, что ваш ребенок научился разделять на фрагменты, прежде чем переходить к делению на короткие.

    Как сделать короткое деление

    Короткое деление в этом возрасте будет включать однозначные делители и 3- или 4-значные дивиденды.

    Слайд из урока Third Space Learning 1-to-1, на котором ученики шаг за шагом проходят короткие деления.

    Сядьте вместе с ребенком и посмотрите на схему ниже, чтобы узнать названия и места для каждой части задачи на деление.

    Они могут показаться очень незнакомыми, когда вы привыкли выписывать свои суммы в строку, поэтому поработайте с ребенком, чтобы убедиться, что он знает свой делитель по делимому!

    Как помочь ребенку разделить трех- или четырехзначное число на однозначное число

    Поскольку эти типы вопросов на деление составляют большинство вопросов, которые ваш ребенок будет решать в 3-м классе, вот рисунок, в котором подробно показано, как разделить трех- или четырехзначное число на однозначное число.

    Отдел 4 года : как вы можете помочь

    В 4-м классе ваш ребенок будет использовать метод краткого деления (метод деления на автобусной остановке, описанный выше), чтобы делить числа до четырех цифр на двузначные числа.

    Метод точно такой же, как и с однозначными цифрами, за исключением того, что первый шаг всегда будет включать группировку.

    На этом этапе процесс деления становится гораздо более трудным, если ваш ребенок не знает наизусть таблицу умножения, поэтому лучшее, что вы можете сделать для него, — это помочь ему выучить ее.

    Им также нужно будет выбрать, какой остаток использовать в зависимости от вопроса, а некоторые распространенные вопросы будут связаны с реальными ситуациями, такими как совместное использование групп между автомобилями или предметов между ящиками.

    Вопросы на деление с остатком

    Остатки могут быть сложной концепцией для понимания, когда дети впервые знакомятся как с короткими, так и с длинными делениями, но важно, чтобы ваш ребенок хорошо их понимал, поскольку они могут кардинально измениться в зависимости от заданного вопроса.

    Попрактикуйтесь в использовании пар множителей в 4-м классе, чтобы облегчить письменное деление

    Пары факторов — это два фактора (числа), которые при умножении вместе дают определенное произведение (результат).

    Упражнения с парами факторов могут помочь вашему ребенку ускорить процесс, когда дело доходит до деления, так как знание того, что 4 x 5 = 20, поможет ему, когда дело доходит до вычисления 20 ÷  4 = _ .

    Попросите ребенка найти как можно больше пар множителей для приведенного ниже числа, и почему бы не превратить это в игру?

    Сядьте вместе со своим ребенком, возьмите ручку и лист бумаги и посмотрите, кто за минуту сможет вычислить наибольшее количество пар множителей для следующих чисел.Результаты могут быть ближе, чем вы думаете!

    Подробнее: Какой наибольший общий делитель

    Отдел 5-го года : как вы можете помочь

    К 5 годам ваш ребенок должен уметь быстро мысленно уменьшать количество слов вдвое или вчетверо.

    Если им трудно, внедрение математики в реальный мир может стать отличным способом помочь им справиться с половинками и четвертинками. Например, когда вы находитесь вне дома, спросите их, сколько бы стоил предмет, если бы он был наполовину дешевле, или сколько граммов было бы в половине 1-килограммового мешка сахара.

    Умение быстро делить на 2 (деление пополам) и 4 (четвертование) станет важной частью деления по мере того, как ваш ребенок будет учиться в школе, поэтому будет очень полезно, если он сможет научиться этому сейчас.

    Короткое деление с десятичными дробями

    Сокращенное деление будет использоваться для чисел, содержащих десятичные дроби, впервые в 5-м году.

    Это означает, что самое время пересмотреть разрядное значение, чтобы ваш ребенок понял, как работают десятичные дроби.

    Десятичные числа являются частями целого (аналогично дробям), но при делении десятичных дробей важно помнить, что столбцы разрядных значений уменьшаются в значении каждый раз, когда вы перемещаетесь вправо.

    Пример деления с десятичной дробью

    Подразделение 6 класса: как вы можете помочь

    В 6-м классе ваш ребенок впервые познакомится со страшной длинной делением!

    Хорошая новость заключается в том, что после того, как вы освоите деление на фрагменты и короткое деление, длинное деление станет совсем неплохим!

    Главное, когда дело доходит до деления в длинную форму для детей, — не торопиться и поощрять их к аккуратному представлению своей работы, чтобы они могли легко заметить ошибки и работать над их исправлением.

    Но даже зная это, деление в длинную может быть пугающей перспективой для детей (и родителей!), так что взгляните на наш пример ниже, чтобы понять, как решить задачу деления в длинную.

    Полное деление для детей, объяснение

    Приведенный ниже пример — это самый популярный метод деления в длинную шкалу для детей, а также тот, с которым вы, возможно, знакомы еще со времен начальной школы.

    Все, что вам нужно для выполнения вычисления 528 ÷  24, это ручка, немного бумаги и ребенок, который хочет освоить этот метод!

    Попробовав несколько вопросов на деление в длину (с вашей помощью для начала), ваш ребенок вскоре увидит, что этот метод может помочь ему понять, как решать задачи на деление в длину независимо от задействованных чисел, и оказывается неоценимым, когда дело доходит до SAT.

    Как выполнить деление в длину: простой пошаговый метод деления в длину, который можно использовать в KS2

    Не беспокойтесь, если процесс внедрения действительно займет некоторое время. Это длинная цепочка вещей, которые нужно запомнить, поэтому потребуется регулярная практика, чтобы запомнить этот метод.

    Просто запомните процесс: делить, умножать, вычитать, сводить; и повторить.

    Тяжелая работа окупится в долгосрочной перспективе, поэтому стоит уделить время своему ребенку сейчас, чтобы убедиться, что деление в столбик хорошо объяснено на раннем этапе, чтобы уменьшить количество раз, когда вы услышите неизбежное:

    » Муммммм…….Как вы выполняете деление в длинное…?»

    Откуда мы знаем, когда делить и какой метод использовать?

    Различные вопросы на деление требуют разных методов деления для их решения, но вот краткое и простое руководство, которое покажет, какой метод и когда должен использовать ваш ребенок:

    • Разбиение лучше всего подходит для небольших чисел и арифметических операций.
    • Сокращенное деление отлично подходит для деления больших чисел на однозначные числа.
    • Длинное деление удобно для деления больших чисел на числа, состоящие из 2 и более цифр.

    Конечно, могут быть случаи, когда каждый из вышеперечисленных методов можно использовать в немного разных сценариях, но, как правило, этого должно быть достаточно, чтобы помочь вашему ребенку принять правильное решение.

    Вопросы для 6-го класса SAT

    Когда придет время сдавать экзамены SAT по математике, более чем вероятно, что вашему ребенку придется отвечать на некоторые вопросы, основанные на разделении.

    Решение задач и рассуждения (бумаги 2 и 3) в 6-м классе могут быть сложными, когда речь идет о задачах на деление.Часто задачи требуют решения более чем одной операции, что может добавить элемент сложности в и без того напряженную обстановку, поэтому поощряйте ребенка обращать внимание на такие слова, как , делиться или , группировать , чтобы помочь им идентифицировать что нужно сделать для решения проблемы.

    Задачи на деление в Бумаге 1 (арифметика) будут представлены в виде числовых предложений, и ваш ребенок должен будет показать свое решение, если вопрос оценивается более чем в 1 балл.

    Эти вопросы легко определить, потому что в них используются символы деления:

    ÷

    или

    или они могут включать дроби.

    Как правило, поощряйте ребенка к мысленному разделению, когда это возможно.

    Хотя письменные методы отлично подходят для больших чисел, возможность мысленного деления даст им преимущество. Это означает, что когда они выполнят письменный метод, они смогут увидеть, является ли их ответ примерно правильным, путем оценки.

    Наряду с бесплатными таблицами деления, вы также можете загрузить набор бесплатных вопросов SAT по делению и умножению, чтобы расширить свою практику.

    Это должно было охватывать все, что вам нужно знать о делении для детей. Если вам нужны дополнительные способы помочь с домашним заданием по математике, мы рекомендуем вам также ознакомиться со следующими руководствами для родителей и детей.

    Индивидуальные онлайн-уроки по математике, которым доверяют школы и учителя
    Каждую неделю репетиторы-специалисты по математике Third Space Learning проводят еженедельные индивидуальные онлайн-уроки и математические занятия для тысяч учащихся начальной школы.С 2013 года мы помогли более 100 000 детей стать более уверенными в себе и способными к математике. Узнайте больше или запросите персональное предложение, чтобы рассказать нам о ваших потребностях и о том, как мы можем помочь.

    Метод расширенных обозначений для раздела

    Деление с расширенной записью

    Как мы только что рассмотрели, расширенная запись сохраняет разрядность числа и помогает нам точно визуализировать, что представляют числа. Решение задач на длинное деление с расширенной нотацией — это всего лишь повторяющаяся последовательность шагов, включающая деление, умножение и вычитание.Как и во всех задачах на деление, важно, чтобы вы очень хорошо знали свои факты умножения, так как это основная часть длинного процесса деления.

    Следуйте шаблону

    Запомните этот шаблон: «Разделить, умножить, вычесть» (÷) (x) (-), и у вас все получится. Давайте подумаем об этом шаблоне, когда будем рассматривать первый пример.

    Шаг 1: (÷)

    Сколько раз 2 может входить в число 86?

    Мы знаем, что 2 может войти в число 8 четыре раза, поэтому оно может войти в число 86 не менее 40 раз

    Шаг 2: (x)

    Умножьте ответ (40) на делитель (2) и запишите ответ под делимым.

    Шаг 3: (-)

    Вычтите ответ (80) из делимого (86), и ответ будет равен 6.

    Теперь мы повторяем шаблон (÷) (x) (-).

    Шаг 4: (÷)

    Сколько раз 2 может составить 6?

    6 ÷ 2 = 3

    Шаг 5: (x)

    Умножьте ответ (3) на делитель (2) и запишите ответ под вторым числом делимого.

    Шаг 6: (-)

    Вычтите ответ (6) из второго числа делимого (6), и ответ будет равен 0.

    Когда у вас больше нет чисел для деления, вы закончили. Затем вы найдете окончательный ответ, добавив числа над знаком деления. В этой задаче вы складываете 40 + 3, и в результате получается 43.

    Трехзначный дивиденд

    Давайте возьмем нашу схему «Деление, умножение, вычитание» и попробуем решить задачу на деление с трехзначным делимым.

    Шаг 1: (÷)

    Сколько раз 3 может быть 600?

    Мы знаем, что 3 дважды входит в число 6, поэтому оно входит в число 642 не менее 200 раз.

    Шаг 3: (-)

    Вычтите свой ответ (600) из делимого (642), и ответ будет равен 42.

    Теперь мы повторяем шаблон «Разделить, Умножить, Вычесть».

    Шаг 4: (÷)

    Сколько раз 3 может войти в число 42?

    Мы знаем, что 3 превратится в 4 один раз, поэтому оно превратится в 42 не менее 10 раз

    Шаг 5: (x)

    Умножьте ответ (10) на делитель (3) и запишите ответ под делимым .

    Шаг 6: (-)

    Вычтите свой ответ (30) из оставшихся чисел делимого (42), и ответ будет равен 12.

    Теперь мы снова повторяем шаблон «Разделить, Умножить, Вычесть».

    Шаг 7: (÷)

    Сколько раз 3 может быть 12?

    12 ÷ 3 = 4

    Шаг 8: (x)

    Умножьте ответ (4) на делитель (3) и запишите ответ под цифрой 12.

    Шаг 9: (-)

    Вычтите ответ (12) из ​​оставшихся чисел (12) и ответ равен 0.

    Когда у вас больше нет чисел для деления, вы закончили, и окончательный ответ можно найти, сложив числа над знаком деления.В этой задаче вы сложите 200 + 10 + 4, и ответ будет 214.

    Резюме урока

    Метод расширенной записи для деления — это просто повторение деления, умножения и вычитания для каждого числа в делимом. Использование расширенной записи в длинном делении показывает разрядное значение и помогает нам вспомнить, что обозначают числа.

    Как избежать деления на ноль в MySQL

    Проблема:

    Вы хотите избежать ошибки деления на ноль.

    Пример:

    В нашей базе данных есть таблица с именем номеров с данными в столбцах id , number_a и number_b .

    идентификатор номер_a номер_b
    1 4 0
    2 57 -5
    3 -7 56
    4 -67 0
    5 23 55
    6 -8 -4

    Разделим число_а на число_б и покажем таблицу с новым столбцом разделить с результатом деления.

    Решение 1:
    ВЫБРАТЬ
    *,
    number_a / NULLIF(number_b, 0) КАК разделить
    ИЗ числа;
     
    Решение 2:
    ВЫБРАТЬ
    *,
    КЕЙС
    КОГДА число_b = 0
    ТОГДА НУЛЬ
    ИНАЧЕ номер_а / номер_б
    КОНЕЦ КАК разделен
    ИЗ числа;
     

    Результат:

    id номер_a номер_b разделенный
    1 4 0 НУЛЕВОЕ
    2 57 -5 -11.4000
    3 -7 56 -0,1250
    4 -67 0 НУЛЕВОЕ
    5 23 55 0,4182
    6 -8 -4 2,0000
    Решение 3:
    ВЫБРАТЬ
    *,
    number_a / number_b КАК разделить
    ИЗ номеров
    ГДЕ число_b != 0;
     

    Результат:

    id номер_a номер_b разделенный
    2 57 -5 -11.4000
    3 -7 56 -0,1250
    5 23 55 0,4182
    6 -8 -4 2,0000
    Обсуждение:

    Первое решение использует функцию NULLIF() , которая принимает два числа в качестве аргументов. Когда первый аргумент равен другому аргументу, в результате функция возвращает NULL .Если число_b равно нулю, делитель равен NULL , а результат деления NULL .

    Второе решение использует оператор CASE . Если условие после ключевого слова WHEN истинно (в нашем случае условие number_b = 0 ), мы указываем, что возвращается NULL. В противном случае деление происходит как обычно.

    Третье решение просто использует условие WHERE для фильтрации строк, в которых число_b равно нулю.Строки с number_b равными нулю отсутствуют в результирующем наборе.


    Колледж алгебры
    Учебник 37: Синтетический отдел и
    теоремы об остатках и факторах

     

    Цели обучения


    После завершения этого руководства вы сможете:
    1. Чтобы разделить многочлен на двучлен вида x c , используя синтетическое деление.
    2. Используйте теорему об остатках в сочетании с синтетическим делением, чтобы найти функциональная ценность.
    3. Используйте теорему о множителях в сочетании с синтетическим делением, чтобы найти множители. и нули полиномиальной функции.

    Введение



    В этом уроке мы рассмотрим синтетическое деление. Вы можете использовать синтетическое деление всякий раз, когда вам нужно разделить многочлен функцией бинома вида x c . Мы можем использовать это, чтобы найти несколько вещей. Один — фактическое частное и остаток вы получите, когда вы разделите полиномиальную функцию на x c . Кроме того, теорема об остатках утверждает, что остаток, который мы получаем, когда на самом деле применяется синтетическое деление дает нам функциональное значение. Другое использование — поиск факторов и нули.Факторная теорема утверждает, что если функциональное значение равно 0 при некотором значении c , тогда x c является множителем и c является нулем. Вы можете не только найти эту функциональную ценность, используя синтетические деление, но и найденное частное может помочь в процессе факторинга. Похоже, синтетическое деление может помочь нам в нескольких разных типах проблем. Я думаю, вы готовы открыть для себя чудесный мир синтетического деления.

     

     

    Учебник




    Синтетическое деление — это еще один способ разделить многочлен на двучлен x c , где c равно константа.


    Шаг 1: Настройка синтетического разделение.


    Простой способ сделать это — сначала настроить его так, как если бы вы делали длинные подразделение, а затем настроить синтетическое подразделение.

    Если вам нужен обзор по постановке задачи на длинное деление, не стесняйтесь чтобы перейти к Урок 36: Длинный Разделение.

    Делитель (то, на что вы делите) находится снаружи коробки. Делимое (то, на что вы делите) находится внутри коробки.

    Когда вы записываете дивиденд, убедитесь, что вы записываете его по убыванию степени, и вы вставляете 0 для любых недостающих терминов. Например, если у вас возникла проблема, многочлен, начинается со степени 4, затем следующая наивысшая степень равна 1. Он отсутствует степени 3 и 2. Поэтому, если бы мы поместили его в разделительную рамку, мы бы написал бы так:

    .

    Это позволит вам выстроить одинаковые термины при решении задачи.

    Когда вы устанавливаете это с помощью синтетического деления, напишите c для делителя x c . Затем запишите коэффициенты делимого справа, сверху. Включите любые 0, которые были вставлены для отсутствующих терминов.


    Шаг 2. Сбросьте ведущий коэффициент в нижнюю строку.



    Шаг 3. Умножьте c на значение, только что написанное в нижней строке.


    Поместите это значение прямо под следующим коэффициентом в делимом:


    Шаг 4. Добавьте столбец, созданный на шаге 3.


    Запишите сумму в нижней строке:


    Шаг 5. Повторите пока не сделано.



    Шаг 6: Запишите отвечать.


    Числа в последней строке составляют ваши коэффициенты частного а также остаток. Последнее значение справа — это остаток. Работая справа налево, следующее число — ваша константа, следующее — коэффициент для x , следующий коэффициент для х в квадрате и т.д…

    Степень частного на единицу меньше степени делимого. Например, если степень делимого равна 4, то степень частное 3.




    Пример 1 : Деление с использованием синтетического деления: .



    Синтетическое деление будет выглядеть так:




    *Сбить 2




    *(-1)(2) = -2
    *Поместите -2 в следующую колонку




    *-3 + (-2) = -5





    Числа в последней строке составляют ваши коэффициенты частного а также остаток.Последнее значение справа — это остаток. Работая справа налево, следующее число — ваша константа, следующее — коэффициент для x , следующий коэффициент для х в квадрате и т.д…




    Пример 2 : Деление с использованием синтетического деления:



    Синтетическое деление будет выглядеть так:




    *Наберите 1




    *(1)(1) =1
    *Поместите 1 в следующую колонку




    *0 + 1 = 1





    Числа в последней строке составляют ваши коэффициенты частного а также остаток.Последнее значение справа — это остаток. Работая справа налево, следующее число — ваша константа, следующее — коэффициент для x , следующий коэффициент для х в квадрате и т.д…




    Теорема об остатках

    Если многочлен f ( x ) делится на x c , затем
    напоминание равно f ( c ).


    Это означает, что мы можем применить синтетическое деление и последнее число справа, который является остатком, расскажет нам, что такое функционал значение c есть.




    Пример 3 : Дано , используйте теорему об остатках, чтобы найти f (-2).

    Используя синтетическое деление, чтобы найти остаток, мы получаем:

    Опять же, наш ответ на этот раз не частное, а остаток.

    Окончательный ответ: f (-2) = -27




    Факторная теорема

    Если f ( x ) является многочленом И

    1) f ( c ) = 0, тогда x c является коэффициентом f ( x ).

    2) x c является коэффициентом f ( x ), тогда f ( c ) = 0,


    Имейте в виду, что алгоритм деления


    делимое = делитель (частное) + напоминание

    Таким образом, если напоминание равно нулю, вы можете использовать это, чтобы помочь вам разложить полином на множители. Если x c является фактором, вы можете переписать исходный многочлен как ( x c ) (частное).

    Вы можете использовать синтетическое деление, чтобы решить эту проблему. Теорема об остатках утверждает, что f ( c ) = остаток. Итак, если остаток равен 0, когда вы применяете синтетическое деление, тогда х c является коэффициентом f ( х ).




    Пример 4 : Используйте синтетическое деление, чтобы разделить на x — 2. Используйте результат, чтобы найти все нули f .

    Используя синтетическое деление, чтобы найти частное, мы получаем:

    Обратите внимание, что остаток равен 0. Это означает, что ( x — 2) является коэффициентом .


    Перезапись f ( x ) как ( x — 2)(частное) получаем:


    Нам нужно закончить эту задачу, приравняв this к нулю и решить это:


    * Установите 1-й коэффициент = 0

    * Установите 2-й коэффициент = 0

    * Установить 3-й коэффициент = 0


    Нули этой функции х = 2, -3 и -1.



    Пример 5 : Решить уравнение учитывая, что 3/2 является нулем (или корнем) числа .


    Используя синтетическое деление, чтобы найти частное, мы получаем:

    Обратите внимание, что остаток равен 0. Это означает, что ( x — 3/2) является коэффициентом .


    Перезапись f ( x ) как ( x — 3/2)(частное) получаем:


    Нам нужно закончить эту задачу, приравняв this к нулю и решить это:





     

    *Учитывать разницу квадратов

    *Обратите внимание, что 1-й множитель равен 2, что является константой, 
    , что никогда не может = 0

    * Установите 2-й коэффициент = 0


    * Установите 3-й фактор = 0
     
     

    * Установите 4-й коэффициент = 0
     


    Решение или нули этой функции: x = 3/2, -1 и 1.


    Практические задачи



    Это тренировочные задачи, которые помогут вам перейти на следующий уровень. Это позволит вам проверить и понять, понимаете ли вы эти виды проблем. Математика работает так же, как и все в противном случае, если вы хотите добиться в этом успеха, вам нужно практиковаться. Даже лучшие спортсмены и музыканты получали помощь на этом пути и много практиковаться, практиковаться, практиковаться, чтобы преуспеть в своем виде спорта или игре на инструменте. На самом деле практики много не бывает.

    Чтобы получить максимальную отдачу от этого, вы должны решить проблему на свой собственный, а затем проверьте свой ответ, нажав на ссылку для ответа/обсуждения для этой проблемы . По ссылке вы найдете ответ а также любые шаги, которые привели к поиску этого ответа.

     

    Практика Задача 1а: Деление с помощью синтетического деления.

     

     

    Практика Задача 2a: Учитывая функцию f ( x ), используйте остаток Теорема для нахождения f (-1).

     

     

    Практика Задача 3a: Решите данное уравнение, учитывая, что 1/2 равно нулю (или корень) из .

     

     

     

     

    Нужна дополнительная помощь по этим темам?






    Последняя редакция Ким Сьюард от 15 марта 2012 г.
    Авторское право на все содержимое (C) 2002–2012 гг., WTAMU и Ким Сьюард. Все права защищены.

    .

Добавить комментарий

Ваш адрес email не будет опубликован.